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PREFACE

This report represents the completion of one phase of the study of
control system design, a study sponsored by the National Aeronautics and
Space Administration under Grant NsG-490 on research in and application
of modern automatic control theory to nuclear rocket dynamics and control.
The report is intended to be a self-contained unit and therefore repeats
some of the work presented in previous status reports.

Portions of the work were submitted to the Department of Electrical
Engineering at the University of Arizona in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.
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ABSTRACT

A method for designing linear closed loop control systems, and non-
linear closed loop control systems having a single, memoryless, nonlinear
and/or time-varying gain with an input-output characteristic confined to
the first and third quadrants is developed. Nonlinear systems designed
by the proposed method have the properties of absolute stability and
bounded outputs for bounded inputs for any nonlinear galn of the type
congidered. Systems in which the gain is time-varying also have these
properties if the time-varying gain is constrained to a finite sector in
the first and third quadrants. The linear part of the open loop system
can have no more than one integration, and all other poles must have
negative real parts. In its basic form, the design method requires that

the nonlinear and/or time-varying gain be located at the input end of the

The design procedure is based on feeding back all the state variables
through constant linear gain elements. An equivalent feedback transfer
function, Heq(s), from fhe output is used to determine n (n is the order
of the linear part of the open loop system) linear algebraic equations
which can be solved for the feedback coefficients. Heq(s) has n-1 zeros
which are forced to be equal to n-1 of the poles of the linear part of the

forward transfer function, G(s). It is shown that G(S)Heq(s) has one pole

and not more than one zero. Thus the Popov frequency criterion for absolute

stability is satisfied for all gains of the type considered.



An equivalent system for input-output relations which consist of a
first order nonlinear and/or time-varying part in series with an n-1 order
stable, linear, time-invariant part is derived. This equivalent system
is used to determine the closed loop response for a known input to a system
designed by the proposed method. It is also used to show that the closed
loop system has n-1 poles equal to n-1 poles of the linear part of the open
loop system, This suggests another key step in the design procedure, that
of forcing n-1 of the open loop poles to be equal to n-1 desired closed
loop poles. Closed loop poles on or near the imaginary axis are not per-
mitted due to structural stability problems.

Problems vhich might be encountered in applying the design procedure
to physical systems are discussed, including applications to multiregion
nuclear reactor control and the structural stability problem mentioned
above. Modifications in the basic design procedure which might be used
when all the state variables cannot be fed back, or when the nonlinearity
is not in the proper location for the basic procedure to apply, are dis-
cussed.

The Popov theorem for absolute stabllity and the design of linear
systems for a desired closed loop response by feeding back all the state
variables are included as background material. The matrix formulation is
developed for designing linear systems, and the procedure is extended to
the design of linear gain insensitive systems. The procedure for designing
linear gain insensitive systems 1s then extended to nonlinear and/or time-
varying systems.

The proposed design procedure for nonlinear and/or time-varying

systems is applicable to systems of any order. Examples are given to

vi




illustrate the design and analysis procedures. The results of an analog

computer simulation of a system designed by the proposed method are given.

vii




CHAPTER I

INTRODUCTION TO THE PROBLEM

Introduction

The performance required of control systems and devices by modern
technology has resulted in the development of complicated systems and
devices which are not amenable to analysis and synthesis by the classical
linear techniques. 1In addition to the undesired nonlinearities which
arise in these systems, nonlinearities are often introduced purposely in
order to realize the desired performance better or more economically. No
general methodg for the analysis and synthesis of such nonlinear systems
exist, Rather, the methods in use today can be applied only to particular
classes of systems or to particular applications. This is not surprising
because of the wide variety of nonlinear systems.

Increased interest is also being manifested in systems with time-
varying parameters. One obvious reason ;or this interest stems from the
space program where certain parameters of the control system may vary over
very wide ;anges as the air density and temperature through which a vehicle
is moving changes rapidly. 1If a parameter variation 1s dependent on the
input to the system, the system is nonlinear. If the variation is caused
by some effect other than the input, and if this effect can be expressed
independently of the input, the system is time-varying. The comment on
the lack of general analysis and synthesis techniques for nonlinear systems

applies to time-varying systems as well.

1



A disproportionate amount of control theory has always been
directed towards stability analysis. This is particularly true of non-
linear control theory. The control engineer is handicapped by the lack
of synthesis procedures which assure not only the stability of the result-
ing system, but other desirable operating characteristics as well. The
development of a proposed synthesis procedure which can be used to design
certain nonlinear and/or time-varying systems is the subject of this

dissertation.

Historical Background

The practices and techniques of classical control theory involve
primarily frequency domain methods. The trend in modern control theory
has been away from these frequency domain methods to analysis and design
procedures based on time domain methods. State space concepts and tech-
niques involving matrix equations are becoming increasingly important.
Kalman (1964) has used such techniques to show that a linear system sub-
ject to a quadratic performance index can be made optimum by feeding back
all the state variables through constant coefficients., This result has
been a key influence in the prpposals by Morgan (1963, 1966) and Schultz
(1966) that linear systems be designed for a desired closed ioop response
by feeding back all the state variables in the proper linear combination.

Other recent developments in control theory involve analysis and
design procedures for nonlinear systems. Prior to the past fifteen to
twenty years, practically all the literature on the analysis and synthesis
of feedback control systems was confined to the consideration of linear

systems, Valuable techniques have been developed and made available for
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the study of linear system characteristics. 1In recent years, an increas-
ing awareness on the part of control engineers that restriction of think-
ing to linear systems imposes unnecessary limitations on the design of
control systems has resulted in a concerted effort to develop correspond-
ing analytical techniques for nonlinear systems. A completely general
theory for nonlinear systems, which behave differently for different
inputs, appears to be virtually impossible at the present time because of
the mathematical difficulties involved. Although some progress has been
made in the theoretical aspects of the problem, most of the procedures
which look good in theory become unwieldy when applied to practical systems
of order higher than first or second. Also, most of the techniques that
have been developed apply only to certain restricted situations. Some of
the more widely known methods in use today are: (1) The linearization
of nonlinearities about some operating point and the application of linear
theory to the resulting system. (2) Graphical methods. (3) Numerical
methods. (4) Describing function analysis. (5) Computer methods, both
analog and digital. (6) Second method of Liapunov. (7) Popov theory.
(8) Optimization techniques based on the maximum principle of Pontryagin
and dynamic programming.

Evidence of the increased interest in time-varying systems is
apparent in the published results of Rozenvasser (1963), Bongiorno (1963),
Sandberg (1964), and Narendra and Goldwyn (1964). Higgins (1966) shows
how the work of the last three are related to the Popov criterion.

The Popov theory is of primary interest here, with the isocline

method and Liapunov's second method also being used. The Liapunov method
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11llustrates the trend of modern control theory to time domain analysis
and design. The Popov stabllity criterion is a frequency domain crite-
rion, but it is derived from time domain equations. The relationship
between Popov's results and the second method of Liapunov has been
established by Yakubovich (1962) and Kalman (19633 .

The isocline method is a basic graphical method which applies
directly to a first order equation of the form %X = f(x,t).,. It is
applicable to second order equations of the form x + f(x,x) = 0. It is
known as the phase plane method when used with second order systems and
is discussed in most books dealing with nonlinear systems, including
Truxel (1955) and Gibson (1983).

Liapunov developed his Second Method in the late nineteenth
century, but it was not until the 1940's in Russia and the early 1960's
in this country that control engineers became interested in the theory.
Standard English language references are the books by Hahn (1963) and
LaSalle and Lefshetz (1961), and the paper by Kalman and Bertram (1960).
The method has evoked widespread interest because of its general nature.
However, because of the difficulty in finding Liapunov functions.
(especially the best one), it has not been possible to apply it generally
to systems of order higher than two or three. Some of the better known
methods for generating Liapunov functions are found in Letov (1961},
Schultz and Gibson (1962), Margolis and Vogt (1963), and Gibson (1963).

The theory of Popov (1961) involves a frequency domain stability
criterion which has a simple graphical interpretation, Its usefulness
is not limited by the order of the system. It provides absolute stability

information and therefore cannot be used to determine regions of stability



as in the Second Method. Other references on the Popov theory are
Aizerman and Gantmacher (1964) and Lefshetz (1965). Extensions to the
Popov theory involving conditions on the slope of the nonlinearity have
been made by Yakubovich (1965), Brockett and Willems (19653, 1965b),
Dewey and Jury (1966), and Dewey (1966). The interpretation of the
criteria reported in these papers is much more difficult than that for
nonlinearities with no restriction on the slope. The results of Dewey
appear to be in the most useful form, while those of Brockett and Willems

are probably the most general.

Approach to the Problem

In this dissertation, some of the recently developed methods of
stability analysis for nonlinear and/or time-varying systems are combined
with the modern control concept of feeding back all the state variables to

develop a proposed design procedure for a certain class of nonlinear and/

or time-varying systems. A method for determining the closed loop response

of the resulting system is alsc developed., The design procedure is appli-
cable to single input, single output, systems containing a single memory-
less nonlinear and/or tihe-varying gain whose input-output characteristic
is confined to the first and third quadrants. A significant factor of
both the design and analysis procedure is that they are applicable, in a
practical sense, to systems of any order.

The design procedure stems‘from the method of designing linear
systems for a desired closed loop response as developed by Schultz (1966).
It makes use of both the idea of feeding back all the state variables as

suggested by modern control theory and of series compensation as used in
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classical design procedures. The method of designing linear systems for
a desired closed loop response is first extended .to a procedure for de-
signing linear gain insensitive systems. This procedure i1s then used
to develop a design procedure for the class of nonlinear and/or time-
varying systems given above. The Popov stability criterion 1is used as
a synthesis tool in that the linear part of the system is compensated
by feeding back all the state variables in a linear combination such
that the Popov stability conditions are always satisfied with no restric-
tions on the nonlinear and/or time-varying gain. Thus the absolute
stability sector of the resulting system includes the entire first and
third quadrants. An equivalent system is developed which makes it
possible to 1) show that the closed loop system has a bounded output for
bounded inputs and 2) determine the output of a particular closed loop
system for a known input, regardless of the order of the svstem. Al-
though the output of the closed loop system depends unon the particular
nonlinear and/or time-varying gain characteristics, the system is linear-
ized to the extent that (n-1) of the closed loop poles remain fixed,
independent of the gain. This results in considerably more control over
the nature of the closed loop response than is possible in the usual non-
linear and/or time-varving system. n refers to the order of the linear
part of the system, as discussed in Chapter 2.

The equivalent system mentioned above consists of a first order
nonlinear and/or time-varying part and an (n-1)st order time-invariant
linear part. The Second Method of Liapunov is used in conjunction with
this equivalent system to show that a system designed by the proposed

method has bounded solutions, or is Lagrange stable, for bounded inputs.
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The isocline method is used to determine the output of the nonlinear and/
or time-varying gain from the equivalent system for a given input. With
this information, the expression for anv other variable in the svstem can

be found by linear transform methods.

Organization

The second chapter discusses the type of nonlinear svstem to be
considered. The stability of such systems is discussed and Popov's
stability criterion is given. Also, definitions of terms used in later
chapters are given.

Chapter 3 1s devoted to linear svstems, and in particular to the
development of a design procedure for gain insensitive systems. This
chapter provides the background for Chapter 4 where the design procedure
for gain insensitive systems is extended to nonlinear and/or time-varying
systems. A matrix formulation for the state variable feedback method of
desipgn is developed and examples are included to illustrate the design

rocedures.

T

The basic design procedure of this dissertation is presented in
Chapter 4. The procedure for designing gain insensitive systems is ex-
tended to systems containing nonlinear and/or time-varying gains. The
stability properties of the resulting system are discussed, and an equiva-
lent system is developed which makes it possible to determine input-output
relations of the closed loop system. Examples are included to fllustrate
the design procedure and the determination_of the closed loop response.

Chapter 5 discusses the structural stability of the systems de-

signed by the procedure of Chapter 4, That 1is, it considers the effect
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on the system's qualitative behavior of small changes in the parameters.
The possibility of obtaining more restrictive results when those of
Chapter 4 cannot be achieved is discussed. Examples are included to
illustrate the proposed modified design procedures.

Chapter 6 contains conclusions and suggestions for further re-

search.



CHAPTFR 11

DEFINITIONS AND STABILITY CRITERIA

Introduction

The purpose of this chapter is to present certain stabilitv
criteria and definitions of terms which are used in the following
chapters. The Popov stability criterion is of particular interest as
it is used both in the design procedure and in the analysis of the re-
sulting systems. The class of systems to which the criterion applies
and which 1s considered in this digsertation is discussed. The extension
of the Popov theory dealing with time-varying systems and with constraints

on the slope of the nonlinearitvy are also given.

System Representation

The system configuration has the form shown in Figure 2-1, N =
f(o) 1s a nonlinear gain, G(s) 1s the transfer function of a linear
sy:tem whose poles are on the Imaginary axis or in the left half plane,
o is the input to the nonlinear gain and u = f(o)is the output. u-'is
also the input control for the linear svstem. Using the terminologv of
Aizerman and Gantmacher (1564), the principal case is that case in which
all the poles of G(s) are in the left half plane. The particular cases
are those cases in which some of the poles of G(s) are on the imaginary
axis and the others are in the left half plane. The simplest particular

case 1s that case in which G(s) has a single pole at the origin and the

9



—LQG—_ N = fép) u C(S)

Figure 2-1. nth Order System with One Nonlinearity.
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other poles are in the left half plane. The order of G(s) is designated
by the letter n.

.

The system equations are written in the form

£ = Ax+ bu (2-1)
u = £(0) (2-2)
o= - 'y (2-3)

where x is an n-dimentional state vector, b is an n-dimensional control
vector, A is the n x n matrix of the linear system G(s), o0 and u are

the scalar input and output of the nonlinearity, and k is an n-dimensional
feedback vector.

The nonlinearities under consideration satisfy the conditions

0 _<_f—§-%l_<_l( (2-4)
for the principal case, or
0« £ < (2-5)
for the particular cases, and
£(0) = 0. (2-6)
Definitions

Several definitions of stability and other terms used in this
dissertation are given in this section. The origin is assumed to be the
equilibrium point in the definitions of asymptotic and absolute stability.

Definition 2-1: The origin is globally asymptotically stable

if, for any initial conditions, the system state always returns
to the origin as t* « .

Definition 2-2: For a given K, the class of systems defined by
Equations 2-1 to 2-3 is said to be absolutely stable if for any
system in this class, that is, for any £(o) which satisfies
Equation 2-4 for the principal case or Equation 2-5 for the
particular cases, the origin is globally asymptotically stable.

Definition 2-3: The boundedness of all solutions is described
as stability in the sense of Lagrange, or Lagrange stability.
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The following criterion for Lagrange stability based on the Second Method
of Liapunov is given bv Lasalle and Lefschetz (1961):

Theorem 2-1: Let © be a bounded set containine the origin and

let V(x) be defined t*roughout the complement of Q. If V + + e

as Ilg l + + o and if V < 0 throughout the complement of 2, then
the system kX = X(x) is Lagrange stable. '

Definition 2-4: Structural stability is the propertv of a physi-
cal system such that the qualitative nature of its oneration
remains unchanged 1f parameters of the svstem are subject to
small variations,

Definition 2-5: A system with open loop poles on the imaginary
axis 1s stable-in-the-limit if it 1s stable for the linear gain
f(o) = eo, where € is arbitrarily small. On the s-plane, this
means that the imaginary axis poles move into the left half plane
for arbitrarily small linear gains in the closed loop system.

Definition 2-6: A plant is said to be completely controllable
if for any t. each initial state x(t ) can be transferred to
any final state g(tf) in a finite time.

Definition 2-7: An unforced plant is said to be completely
observable on [t_,t_.] if for given t_ and t_ every state x(t )
can be d termineg from the knowledgeoof y(tf on [t ,tf], wheFe
v(t) = ¢ x(t) is the output. °

Definition 2-4 is given by Cunningham (1958) and Nefinitions 2-6
and 2-7 by Kreindler and Sarachik (1964). It is desirable to express the
conditions for a system to be controllable and observable in terms of the
coefficients in the system equations. It.can be shown that an nth order

process characterized by % = Ax + bu is completely controllable if and

only if the vectors b, Ab, ----, én-ly are linearly independent, and com-

T T Tn-
pletely observable if and only if the vectors ¢ , A gT, ———, Al lcT

-~

are

linearly independent (Kalman, 1963b),

The Stabilitv Criterion of Popov

The V. M. Popov theorem gives sufficient conditions for the svystem

of Equations 2-1 to 2-3 to be absolutely stable. This theorem is given below:
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For the system of Faunations 2-1 to 2-3 to be absolutely stable
in the sector [0, K] for the principal case, and in the sector

(0, K] for the particular cases it is sufficient that there
exist a finite real number g such that for all w >0

Re[(1 + Jaw)6(Iw)] + % > 0 (2-7)

and, additionally for the particular cases, that the conditions
for stability in-the-1limit be satisfiled.

A purely geometric formulation of the Popov theorem can be obtained
from the above analvtic formulation (Aizerman and Gantmacher, 1964). A
modified frequency response, W(jw), 1s used where Re[W(jw)] = Re[g(jw)] =

X and Im[W(jw)] = v Im[G(Ju)] = Y. Then

Re[(1 + jquw)G(jw)] = X-qY.

Condition 2-7 can now be written as

X-qY + % > 0. (2-8)

On the W-plane the limiting condition of Equation 2-8 is the equation of a

straight line with slope %-which passes through the point - % on the real

axis. This line is called the Popov line. Condition (2-8) requires that
the plot of the modified frequency response lie entirely in the half plane
to the right of the Popov line. Thus the geometric formulation of the

V. M. Popov theorem is as follows:

In order that the system defined by Equations 2-1 to 2-3 be
absolutely stable in the sector [0, K] for the principal case,

or in the sector (0, K] for the particular cases, it is suffi-
cient that there exist in the W-plane a straight line, passing
through the point on the real axis with abscissa - =, such that
the modified frequency response W(jw) lies strictly to the right
of it, and additionally, that for the particular cases the condi-
tions for stability-in-the-limit be satisfied.
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Figure 2-2 illustrates the geometric interpretation of the Popov
theorem. In the example of Figure 2-2¢, the Popov line can be drawn
through the origin. Thus the stability sector [0, K] includes the com-
plete first and third quadrants. Figure 2-2d illustrates a case where
the stability sector for nonlinear systems as found from the Popov the-
orem is less than the stabllity sector for linear systems.

In a practical system, it is reasonable to expect the slope of
the nonlinearity to be limited. The question therefore arises as to
whether the stability sector of the nonlinear system can be increased by
placing restrictions on the slope of the nonlinearity in systems such as
that illustrated by Figure 2-2d. This problem has been investigated and
criteria developed for extending the stability sector in such cases by
Yakubovich (1965a, 1965b), Brockett and Willems (1965a, 1965b), Dewey
and Jury (1966), and Dewey (1966). The results of Dewey and Jurv and
Yakubovich are essentiallv the same although they were obtained by dif-
ferent approaches. Brockett and Willems' results are in a different form
and, though they appear to be more general, are not as easily interpreted.

Dewey's criterien is given here in order to indicate the nature
of the results obtained when restrictions are placed on the slope of the
nonlinearity. The results reported in the other references have the same
general form. Conditions 2-4 (or 2-5) and 2-6 still apply along with the

additional restrictions that

1. |f()| < ™ (2-9)
2. %y <D Ly (2-10)
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Figure 2-2c. Popov Line Goes Figure 2-2d. The Popov Stability
Through the Origin, K = » , Sector is Less Than That for a

Linear Gain.

Figure 2-2. TIllustrations of the Geometric Interpretation of the Popov

Criterion.
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The restriction that F(o) be bounded is not required in the other
napers. This restriction makes possible a simpler criterion. The theorem
is as follows:

Theorem: For the system shown in Figure 1, if there exists a
finite number q such that for all w>0,

a) H(w) = Re[jwqG(jw)] + w2 {1 + (Kz—Kl)ReG(jw)—KlelG(jw)|2}3_0 (2-11)
b) cUw# - %, c)> - &, (2-12)

then in the principal case, for all nonlinearities with slope
restriction (-K,, K,) in the sector [0, K] and for all initial
states, the response is bounded on [0,~) and tends to zero as
t + o, In the simplest particular case, the theorem remains
true for all nonlinearities f£(o) in the sector [e, K] such that
f(0) -eo 1s bounded on (-=», =) where € >0 1s arbitrarily small.

Corollary 1: With the slope restriction f'> -1, condition a)

becomes
2 2
Rel4uqG(Jw)] + w {Rec(jw)-xllc(jm)x } > 0. ' (2-13)
Corollary 2: With the slope restriction f'> KZ’ condition a)
becomes
Re[Jq6 (Ju) 1-u” {ReG(Ju)+ K, |6y |7} > 0. (2-14)
Corollary 3: With the slope restriction (O, Kz), condition a)
becomes
Ref[jwqG(jw)] + wz{ReG(ju) +‘%—}3_0. (2-15)
2
Corollary 4: With the slope restriction f'> 0, condition a)
becomes
Re{(Juq + mz)G(jw)li 0. ' (2-16)

Remark: 1In the particular cases, inequalities 2-11, 2-13, and
2-14 can only be satisfied for the simplest particular case.
Inequalities 2-15 and 2-16 can be considered for all the parti-
cular cases.

The Popov theory has been extended to time-varving systems by

Rozenvasser (1963) for the principal case. In the time-varvine systems,
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f (o) becomes f(o,t). The result is extended to the simplest particular
case by Higgins (1966). The stability criterion is

ReG(jw) + -115 >0, (2-9)

O0f the stability theory presented hexe, this dissertation makes
use primarily of the V. M. Popov theorem and its extension to time-
varying systems. The extensions of the Popov theory in which the slope
of the nonlinearity is considered are used to indicate how the desien
procedure might be modified in cases where more restrictions on the non-
linearity can be tolerated. It is noted that in the Popov criterion and
all its extensions, the object in the analysis is to determine the value
of one or more constants which indicate the maximum stability sector for
a given G(s). This determines the constraints which the nonlinearity
must satisfy if the system is to be absolutely stable. In this disser-
tation, the approach is to modify G(s) so that no constraints on the
nonlinearity are required in order to satisfy the Popov criterion for

absolute stability.



CHAPTER III

CLOSED LOOP DESIGN OF LINEAR SYSTEMS
VIA STATE VARIABLE FEEDBACK

Introduction

The purpose of this chapter is to present a method for the design
of scalar input, scalar output, linear control systems via the state
variable feedback (SVF) method. First, the procedure for designing for
a desired closed loop transfer function is presented. This procedure is
then used as the basis for developing a method for designing linear gain
insensitive systems which is extended to certain nonlinear and/or time-
varying systems in Chapter 4.

The procedure for designing for a desired closed loop response
1s formulated from the matrix approach. This procedure is discussed in
detail by Schultz (1966) from the standpoint of the block diagram. Al-
though the block diagram approach is more familiar to many control enei-
neers, the matrix approach is more general and does not require the manip-
ulation of the block diaqram into any special form. When the svstem is
represented by a block diagram of the form assumed by Schultz, the two
methods are equivalent.

After most of this chapter was written, it was discovered by the
author that Morgan (1963, 1966) has also proposed the use of state vari-
able feedback for designing linear systems to have a desired closed loop
transfer function. He presents the matrix formulation for the design

18



19
procedure, but the approach is somewhat different from that presented
here. The procedure presented here provides for a combination of state
variable feedback as called for by modern control theory and series com-
pensation as practiced in classical control theory, thereby combining
the advantages of the two and increasing the versatilitv of the design
procedure. While state variable feedback alone can change neither the
order of the system nor the location of the zeros, the method developed
here can do both.

The design procedure makes use of the fact that the closed loop
poles of a linear system may be forced to occur anywhere in the s-plane
by feeding back all the state variables in the proper linear combination
(Brockett, 1965). The requirement that all the state variables be fed
back indicates that the state variables should be chosen to agree with
actual physical variables. When it is not possible, or practical, to
feed back all the state variables, the calculated values of the feedback
coefficients can be used to determine suitable minor loop compensation.
When only the output can be fed back, the resulting configuration 1is
similar to that obtained by the Guillemin procedure (Truxal, 1955).

The SVF method is a systematic, completely analytic design
procedure in which the analytical work is relatively simple, requiring
the solution of n linear algebraic equations, where n 1s the order of
the system. It differs in basic philosophy from both the classical and
modern design procedures which are in common use. The common practice
in the classical approach to the design of linear control systems 1is to

modify the open loop system in such a way that when the loop is closed
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the performance is satisfactory. That is, the system is compensated
with a view towards realizing certain open loop characteristics which,
in general, lead to desirable closed loop performance. Among the ex-
tensive literature on this subject are the books by Bower and Schultheiss
(1958) and D'Azzo and Houpis (1960). 1In the SVF method, the svstem is
compensated so as to realize a desired closed loop transfer function
which 18 determined from the performance specifications. Since, ulti-
mately, desirable closed loop response is the goal of the designer, a
method of designing for desired closed loop characteristics provides an
advantage over one of designing for desired open loop characteristics.

Although the motivation for the SVF method of design stems from
a result of modern control theory, the approach is quite different. 1In
the matrix formulation of modern control theory, a system 1s represented

by a set of equations as follows:

% = Ax + bu (3-1)
y=c (3-2)

X

Here x 18 an n-dimensional state vector, A is an (n x n) plant matrix,

y is the scalar output, c is an n-dimensional output vector, b is an
n-dimensional control vector, and u i1s a scalar control. In the optimum
control problem the design is based on minimizing a quadratic perform-

ance index of the form

V(x) = (xTox + pu2)dt = (xTrrTx + puz)dt. (3-3)
o 0
The well known solution to this problem (Kalman, 1964) is that the optimal

control is
u= —ETx . (3-4)

~
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That 1is, the optimal control consists of a linear combination of all the
state variables. This linear combination may be found by solving the

reduced Matrix Ricatti equation,

ATR +RA-Rbp 'R + rrl = 0;
~ ~0  ~0~ 20~ ~ X0 ==

B is then found from E =‘B0Qf This result suggests a system configura-
tion quite different from that of the classical method of series compen-
sation with unity feedback from the output. In fact, using the frequency
domain criterion for optimality as developed by Kalman (1964), it can be
shown that very few systems designed by the classical method are optimal
for any quadratic performance index. Systems designed by the SVF method
may or may not satisfy this criterion. This 1s discussed further in the
section on gain insensitive systems.

A major difficulty in the optimum control approach to design
arises from the lack of suitable criteria for specifyineg the performance
index. The SVF method makes use of the system configuration suggested
by Equation 3-4, but the design criteria is a desired closed loop trans-
fer function rather than a performance index.

The system configuratiop resulting from SVF design is 1llustrated
in Figure 3-1la. Gp(s) represents the plant to be controlled, Cc(s) the
series compensation, and K an unspecified linear gain. G(s) 1is defined
as G(s) = Gc(s)Gp(s) and KG(s) is the forward transfer function. Since

it is usually desirable that k., = 1 in order that the output will follow

1
the input with as small a steady state error as possible, this value 1is
used throughout this dissertation. The loss of this variable parameter

is compensated for by providing the unspecified gain, K, precedine G(s).
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Since the SVF method requires that the state variables correspond

to actual physical variables which can be measured and fed back, it some-
times happens that a term involving 0 must be included in Fquation 3-1.

For example, in Figure 3-1b, in =--bxn + aKu + Ka, and Equation 3-1 becomes

% = Ax + bu + §ﬁ, (3-5a)
or

% = Ax + By, (3-5)
where

1

[

with y and d n-dimensional vectors and

Systems represented by Equation 3-1 will be referred to in this disser-
E;tion as Class I and those represented by Equation 3-5a or 3-5b as
Class 11I.
The remainder of this chapter is arranged in the following
order:
1. The matrix formulation of SVF design is developed.
2, A design procedure for gain insensitive systems is developed.
3. The procedure to be followed when all the state variables
cannot be fed back is discussed,

4, The results are summarized,
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The SVF Method -~ Matrix Formulation

The general procedure is developed on the basis of Class IT
systems since the results can easily be extended to Class I systems by
letting d = 0,

From Figure 3-1b,

u=-kx +r. (3-6)
This is the same as Equation 3-4 except for the term r, which represents

the scalar input to the closed loop system. Substituting FEquation 3-6

into Equation 3-5a, transforming, and solving for X(s) gives

X(s) = [aI + dk"s-(A-bk") 17 (b + ds)R(s). (3-7)

This 1s combined with Equation 3-2 to give the closed loop transfer
function in terms of factors of the form Kkj (From Figure 3-1, it is

evident that K is a factor in each element of b and d).
2(s) = ' s(X + ak) - (A-bkD1T (b + ds). (3-8)

This transfer function can now be compared with the desired transfer
function, and the n algebraic equations that result from equatine cor-

responding coefficients of 8 can be solved for the Kk With the pre-

10

vious assumption that k, = 1, K and the other ki can then be found.

1

Actually, only the denominators of the two transfer functions need to

be compared in order to determine the k, and K, as state variable feed-

i
back does not affect the zeros of the transfer function: i.e., the zeros
of the closed loop transfer function are the same as the zeros of the

open loop transfer function. This can be shown from the equivalent

system of Figure 3-lc. The expression for the equivalent feedback
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transfer function, Heq(s), is derived in the section on gain insensitive
systems, and it is shown there that the poles of Heq(s) are also zeros
of G(s). Thus the zeros of the closed loop transfer function,

KG(s)

+(8) = TG (OF Ty
S eq s

R

must be the same as the zeros of G(s). If the numerator of G(sjais not
equal to the numerator of the desired %(s), series compensation is neces-
sary to make the two compatible. The case where series compensation is
not necessary ig called the simplest case, and the case where series
compensation is required 1s called thé general case.

If G(s) is not known, the numerator must be found in order to
compare it with the numerator of the desired closed loop transfer func-
tion. From Figure 3-1, KG(s) = XS%%. Transforming Fquations 3-2 and

u(

3-5, combining, and solving for %é%% gives

KG(s) = %ILZ)L = 5T[s§—§]_1(13 + ds). (3-9)

This can be written in the form
¢'F(s) (b + da)
det F(s)

KG(s) = (3-10)

where F(s) is the matrix [sI-A] and Ea(s) is the adjoint of F(s). Since
the adjoint has no poles (only positive powers of s occur in the‘matrix),
it follows that the poles of the transfer function must be zeros of det
F(s). The converse does not necessarily hold, since one or more zeros
of the determinant may be cancelled by zeros in the numerator. The
necessary and sufficient conditions that the converse hold are that the

system be both controllable and observable (Brockett, 1965). It is not
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usually necessary to find all the elements of v?(3) in order to determine

~

the numerator of G(s). TFor example, if the non-zero elements of ¢ are

designated ¢, and the non-zero elements of d are designated d,, the only

i ]

elements of the adjoint matrix that affect the numerator of G(s) are the
, th th
elements in the 1 rows and the j colums. In systems where y = X5
the only non-zero element of ¢ is Cye Therefore/no elements in any row
other than the first affect the numerator of G(s). If it is desirable to
determine the complete inverse matrix, the Leverrier algorithm
(Gantmacher, 1959) provides an orderly procedure for the simultaneous
computation of the coefficients of the characteristic polynomial and the

adjoint matrix, and is adaptable to machine computation.

Equation 3-8 is now written in the form

T a
¢ Fa () (b + ds)
%(s) = k (3-11)
det Ek(s)

where Ek(s) is the matrix [s(I + QET) - (A - ka)] and EKa(s) is the adjoint
of fk(s). Assuming that the numerator of G(s) is known, only the denom—
inator of Equation 3-11 must be determined in order to find %(s) in terms
of the ki and K, and this is equal to det Fk(s).

The above discussion indicates the general procedure of SVF
desien. Before outlining the specific procedure it is shown that the
algebralc equations which must be solved for the Kki are always linear.

The proof makes use of the following theorem (Nering, 1963):

If A' 1s the matrix obtained from A by adding a multiple of
one row (or column) to another, then det A' = det A,



Since K is a factor of the elements of both b and d, these vectors are

written as

' 7 '
by Kb_!l 4 | Kd{!
. . . .
b= = : d =: = D
b J Kb" , a Kd'
n n_‘_ n__; n_:

The matrix of Equation 3-8 has the form

1

+Kl.b!| TsKk.d'-a. +Kk.b!| =+++ [sKk d'-a, +Kk b |
L n 1n n lJ

' —
s (1+Kk,d))-a,; ;+Kk by M Watiaris! 1

i

Ve v | Ty v e i "_ '
[Kkldzs a21+Kk1b2:} Ls(lﬂ(kzdz) a,,+Kk, b3 J Lszndz a2n+Kknb2]

o . . ,
LR + 1] LI 1 o e Ty [
I:Kkldns a_ Kklbn! L yd!s an2+Kk2an IL s (1+Kk_d’) ann+Kknan

| ]
where the aij are the elements of the é matrix. Now the nth row
sdi + b!
multiplied by —557——v is subtracted from the first row. If § = 0
sdn + b 1]

for 1 # § and 1 for 1 = j, then the jth element of the first row is

given by the following expression:

- -

1 ] ! \ 1
e 5 sd1 + bl! . ‘s sd1 + bl
- 1 t 1 T

13~ °nj sa’ ¥ bn! 1j © ®nj sd + b7

—

This process 1s repeated for each of the first (n-1) rows, with the nth
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sdi + b! h
row multiplied by i+ o' being subtracted from the i row. Then the
n n

jth element of the ith row is given by the following expression:

Sdi +b; sd! + b]

i 1 1
8 {644~ an sd' +o'| “2%j35%t%isa o (3-12)
n n n n

According to the above theorem, the determinant is not changed by these
operations. Since Kki is not a factor’in the terms of Equation 3-12, it
follows that the factors Kki appear only in the nth row of the new matrix.
Thus the determinant contains only first order terms in the Kk, and has

i

the form

detls(L + dk') - (4 - kD] = £ (K, Kk )s"

n—l ‘. L)
+ fn_l(Kkl,---Kkn)s + +f1(Kk1, ,Kkn)s (3-13)

+ £ Kk, oo KK ),

where the functions f --,fn are linear in the Kk The denominator

09’ 1

of the desired closed loop transfer function can be written in the form,

n-1
P(s) = 8" +P__ s  +rec+ Pus + P (3-14)

Equating corresponding coefficients of Equations 3-13 and 3-14 gives a
set of n linear algebraic equations which are linear in Kki and can be
solved for K and k (kl is usuvally set equal to unity as noted previously,
so only n unknowns occur in the n equations).

In the general case, it is not required that the numerators of
Gp(s) and %(s) be compatible, although %Ks) may never have a pole-zero
excess less than that of Cp(s), as this would require a compensator in

which the numerator is of higher order than the denominator. Series
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compensation is used in addition to state variable feedback in order to
realize the desired response. This usually means adding pole-zero pairs,
with the zeros being required to shape the closed loop frequency response
curve or to provide the required velocity error coefficient (Truxal,
1955).

The zeros of the compensator are assumed to be known since,
unless they cancel a pole in Gp(s), they will also be zeros of %{s).
Each pole-zero pair increases the order of the system, except in those
cases where poles or zeros are cancelled, and the number of state

variables by one. This means that each pole-zero pair adds two new

parameters, the pole location and the feedback coefficient. One of

these must be chosen arbitrarily and the other determined along with
the other ki' If the new feedback coefficients are chosen to be zero, a
series compensator results, and the locations of the poles must be

determined along with the value of the non-zero k If the pole

i.
locations are chosen, the additional feedback coefficients must be
determined along with the feedback coefficients from the original system.

On the basis of the above discussion, the following design

procedures are suggested:

The Simplest Case

1. Describe the system in terms of meaningful, physical state
variables and assume these are all available and are fed
back through constant gain elements.

2. Choose the desired closed loop response, %(s).

3. From Equation 3-8, find %-(s) in terms of K and the ki.
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4. Equate the expressions for the denominator of %{s) from
steps 2 and 3 and solve for K and the ki by equating like
powers of s,

5. Use the known values of the system parameters to realize a
final system configuration. If all the state variables are
not available to feed back, use the calculated values of k

to determine suitable minor loop compensation.

The General Case

1. Same as step 1 of the simplest case.

2, Same as step 2 of the simplest case.

3. Add a sufficient number of pole-zero pairs to make G(3) =
Gc(s)Gp(s) compatible with the desired %(s). Assume the
number added is p.

4, Choose p arbitrary pole and/or feedback coefficients
assoclated with the p new state variables introduced.

5. Same as step 3 for the simplest case.

6. Equate the expressions for the denominator of %(s) from steps
2 and 5 and solve for K and the ki by equating like powers
of s,

7. Same as step 5 for the simplest case.

The following examples illustrate the design procedures., Example
3-1 represents the simplest case of a Class I system. Example 3-2

represents the general case of a Class II system.

Example 3-1: 1In Figure 3-la, let Gc(s) = 1, and assume that the system

is represented by the set of differential equations
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17 %
x2 =—x2 + 2x3
x3 = —lox,3 + 5Ku
u = —ng +r
= ch = X
y =& 1
kl =1,
Comparing this with Equation 3-1 yields
{o 1 0 0 1
A=10 -1 2 b= 0 c = 0
1,0 0 =41, 5k |, OJ.
Y
The desired-ﬁ(s) is chosen as
Yo\ 260 ) 260 . (3-15)
R(s) = =5 3

(s™ + 4s + 13) (s + 20) 8~ + 2432 + 93s + 260

From the A matrix and the b vector, the matrix ef Equation 3-8 is found

to be

f‘s -1 0

l 0 s +1 -2
l
!

5

i
i

~
=
r

2 s +4+5 Kk3 .

H

Substituting this matrix and the b and ¢ vectors into Equation 3-11 with

d = 0 gives

Ie) = ¢ [sT- (a-bKD]1 T

83+(5+5Kk3)32+(4+51(k

3+10Kk2)s+10K
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Equating Equation 3-16 to the desired transfer function of Equation 3-15
gives the following set of linear algebraic equations:
10K = 260

5+5Kk3 = 24

4+5Kk3+10Kk2 = 93.

These equations can be solved for Kk, , giving

K = 26

These equations are easily solved for the proper set of feedback coeffi-
cients to give the desired closed loop transfer function. The result is

given below:

K = 26
k, = 0.269
k, = 0.146.

Example 3-2: Assume that the system to be controlled is represented by

the equations

For this system,
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Gp(s) =1 0 =
‘O §+2 1

i — f
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1
s(s+2)

(3-17)

It is assumed that the desired closed loop transfer function is

%(s) - 5 5(s+4) .
(s "+2s+2) (s+10)

The realization of this desired transfer function requires, in addition

to state varlable feedback, a compensator of the form (s+h) as shown 1in

s+

Figure 3-2a with the value of either o or the feedback coeffieient k., to

3

be chosen arbitrarily. If a is chosen to be 10, the system equations

become

.
X, = X

1 2
x, = --2x2+x3
x3 = —10x3+4ku+ku
u = —ka+r

= ch = x
y=osrE%n
k1 =1

0 1 o‘i

A= |0 -2 1| b =
0 0 -10J,
0 |

d= 0 c =
K,

From the A matrix and the b and d vectors, the

is found to be

07

0

0, .

matrix of Equation 3-8
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The Plant of Example 3-2 with Series Compensation.

s + 10

GP(S)

Figure 3-2b,

Method of Controlling the Plant of Example 3-2,
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-
s -1 0]
0 s+2 -1
{§?+4K Kkzs+4Kk2 s+Kk38+10+4Kk3 .

Substituting this matrix and vectors b, ¢, and d into Equation 3-11 gives

K(s+4)
+Kk2) 52+( 20+8Kk 3+4Kk 2+1<) s+4K

Y
E(S) = . (3—19)

(1+Kk3)s3+(12+6Kk3

Equating Equation 3-19 to the desired transfer function of Equation 3-18
gives

4K

1+Kk3

20

20+8Kk3+4Kk +K

2
1+Kk3

= 22

12+6Kk3+Kk2

1+Kk3

= 12,

The solution to this set of equations is

This completes the design procedure, The final system configuration is

shown in Figure 3-2b.
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Applications in Nuclear Reactor Control System Design

In this section several examples of the application of state variable
feedback design to reactor control are presented. Since this new design
method makes use of all the system variables, it is particularly amenable
to the control of multiregion reactors as well as single region models.
With the recent emphasis on spacial kineties, this method of control is
apropos.

Two Temperature Region Reactor

The block diagram for the linear two-temperature region reactor with
state variable feedback control and neglecting delayed neutrons, is shown

in Fig. 3.3 where

a, = heat removal coefficients of ith region
k, = feedback coefficients

K = gain constant of controller

K, = proportionality constant between power and

th
temperature of the 1 region

a, = temperature coefficient of reactivity of the
ith region

X = neutron density or power

X, = temperature in region 1

Xy = temperature in region 2

X, = reactivity input from controller
B12 = temperature coupling coefficient ‘rom region 1 to 2
B21 = temperature coupling coefficient from region 2 to 1

Y = reciprocal of the controller time constant
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Figure 3.3 Block Diagram of Two Temperature Region Reactor
with State Variable Feedback Control
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steady state neutron density or power

effective neutron generation time

The differential equations defining the system are

Me

Mo

%3

%, =

-n n n
(o]

) )
=" 0, X, - T 0,X, +—— X

T 172 T 273 T 74
Kyxy-a; (x, + By x5)

K. x,~a, (B + x

2%17221%19%9 3)

--'yx4 + Ku

Referring to the equations above, the terms in Eq. (3-8) are given by

-n -n n
o, —o. . D
T 1 T 2 T
"8 T3By, 0
~8,81 9 -a, 0
0 0 -y
]

where d = O,

Then

(sI-A-bh'] =

T
k ﬁ kl k2 k3 kAl
n n -n
2 q 9 4 -9
T 1 T 2 T
s-'l-a1 alB21 0
=F
a2B12 s+a2 0
Kk2 Kk3 s+y+Kk4
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Letting the co-factors of F be F , and the determinate of F be det F, the

1]
inverse of F is
T
1 gy
~ det F
and Eq. (3-8) becomes
Us) | cTF_lb

After some matrix algebra, the transfer function for the case in point is

Y(s) 41

R(s) ¥ det F

and in terms of the system parameters

n
o] 2
F41 = [s +(al+a2)s+alaz(1—B12B21)]
and
det F = g (a.+ K, K)s>+[(a.+a.) (v+Kk,)+a.a. (1-B. B )+K2a2n°
et = s (ajta byt K)s +l(a,*a,) (y#+Kk,)+a,a,(1-B;,8,,
Kjon, 1y 2 n,
# =04 24 R]e+{aa, (y4k,K) (1-B 8, ) + 2 [-a,a,B, K,

- u2a2B12K1+K2a2(a1+y+k4K)+Klal(az+y+k4K)+Kk1(a1+a2)+K1k2K+K2k3K]}8

n
o
+ _r{[-alale1K2-a2312K1+K2a2a1+K1a1a2](y+k4K)+K1k3KazB12+k1Ka132

+a1B21K2k2K+le(ala2)312B21+K1k2Ka2+K2k3Ka1}

As in the previous example it is seen that the zeroces of the system transfer

function are independent of ki’ while the pole locations are a function of
ki' Therefore the form of the system time response can be chosen at will

by selecting proper values for the feedback coefficlents ki'




40

Example 3-3: As an example, consider a system that has the following

constants.
5 -5
n = 10~ watts K1 = 2x10 “degrees/watt sec
-1 -5
y = 10 sec K2 = 10 ~ degrees/watt sec
-1
a1 = 0.01 sec K= 1.0
-1
a, = 0.05 sec T = 0.1 sec
a, = 1073 per degree B., = ~0.2
1 12 )
a, = 107 per d B, = -1.0
2 P egree 91 .

For these values of the system parameter

Fup = 108 (5240, 06s+4x10~%)

Therefore the system has two zeroes close to the origin. Suppose that the

desired dynamics of the system is given by the second order transfer function

Y(s) - 106

R 4 g24208+200

which has well-behaved transient characteristics with a dampening ratio of

0.707 and desirable frequency response. To realize these desired system

-

characteristics, Eq. 3-8 must equal

Y(s) 106(§2+0.06s+4x10_4

- )
R(s)

(s24208+200) (s240.068+4x10"

4

or

Y(s) _ 108 (s%40.065+4x10"%

R(8)  419063420152412540.08

Equating the coefficients of like powers of s in the denominator of the
equation above to det F and solving the resultant linear algebraic simul-

taneous Egqs. for ki yields
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k, = +1.98x10"‘ k3 = -0.,002

k2 = -0.02 k4 = +10.0

Figures 3.4 and 3.5 give the response of the system variables to a step

demand in power. From the response curve of x,, it is seen that the trans-

1°
ient response behavior corresponds exactly to that expected from the desired
system transfer function. Further from simulation studies, variations in

the feedback coefficients k2 and k3 corresponding to the temperature state
variables, had virtually no effect on the system dynamics. Neglecting these
two feedbacks essentially did not alter the step response. A + 20% change

in the control rod position feedback coefficient had no noticeable effect on
the transient response. Setting this feedback constant equal to zero gave a
transient response with a damping ratio of about 0.25. Changes in the steady
state power level resulting from a step demand in power were sensitive to
variations in kl’ the output state variable feedback coefficient. As kl
decreased, the steady state power level increased and the system became more
damped. For increasing values of kl the steady state power level decreased

and the system became less damped. From the above it can be concluded that

for the case in point only the two feedback coefficients kl and k4 are signifi-

-

cant in determining the system dynamics.

Coupled Core Reactors

Another good illustration of the application of this new design technique
is the control of a coupled core reactor, a block diagram of which, along
with the feedback coefficients, is shown in Fig. 3.6. For convenience,
delayed neutrons have been neglected, and the cores are assumed to be identical
with the same neutron coupling coefficient. In this model the symbols are as

denoted in the previous example except
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Figure 3.6 Block Diagram of Coupled Core Reactor
with State Variable Feedback Control
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temperature in core 2

neutron coupling coefficient
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total neutron density or power of combined cores

reactivity input from controller

The differential equations for this system are

In this example

(sI-A-bk’] =

an
. - _D D _ 90 9
LS T R X3 T %t s
x2 = lel—ax2
. ..D_,D__%%
=TT XTTY T X4
x4 = K1x3—ax4
iS = —7x5+Ku
v = %R,
an n
o2 —o =D 0 _ o
T T T T
—K1 s+a 0 0 0
-Dn D an
0 0 s+— — 0
T T T
0 0 —Kl s+a 0
+
Kkl Kk2 Kk3 Kk4 s Y+Kk5
]

]
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and the closed loop transfer function is

R(F ., +F. )
¥(s) _ Tl 51753
R(s) det F

where again F1j are the co-factors of F and det F denotes the determinate

of F.

~

Example 3-4: To demonstrate the above, assume the following values

for the system parameters

n = 10S watts Kl = 10"5 degrees/watt sec
a= 10'_2 sec-1 T = 0.1 gec
o = 10_3 per degree D= 10_3
vy = 10 sec—.l K=1.0

and specify the same system transfer function as in the previous example.

To realize this desired system transfer function Eq. (3-8) must equal

¥(s) _ __10°%(s+0.01) (s2+10005+10)
R(s) (s+0.01)(sz+10003+10)(32+205+200)

Following the same procedure as before equating the coefficients of like

powers of s in the denominator of the equation above to the corresponding
coefficients of powers of s in the denominator of det F and solving the

linear algebraic simultaneous equations thus formed, the values for ki are

determined.

4 4

+2 X 10 +2 X 10°

=
I

e
L]

2

k. = -2 X 10” K, = -1.92 X 1072

k5 = +10

Figure 3.7 shows the response of the system to a step demand in power for

a coupling coefficient D = 0,001, 0.01, and 0.1. As indicated in the figure,
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the desired system response y(t) is insensitive to changes in D. Obviously,
the response of the individual cores will depend on D.

As in the previous example, the temperature feedbacks had little
influence on the system dynamics and neglecting them made only a very
slight change in the system response. Again the final value of the system
power response was affected by variations in the power feedback coefficients,

increasing for decreasing values in k., or k3. Neglecting the control rod

1
position state variable feedback yields a step response with about a 0.3
damping ratio, and again variations in ks + 207 had little effect on the

power response. It can be concluded therefore that only the feedback co-

efficients kl, k3 and k5 have appreciable effects on the system behavior.

Inaccessible State Variables

In the examples presented, it was assumed that all state variables were
available. If delayed neutrons are included in the system model, obviously
it is impossible to measure neutron precursor concentration for control pur-
poses, and thus this state variable is not available. However, it can easily
be generated provided it can be determined from a mathematical relationship.
To demonstrate, consider the block diagram of a reactor system with delayed
neutrons and state variable feedback, as shown in Fig. 3.8a.

Obviously, the state variable x, cannot be measured; however, it can

1
be generated by moving the line at 3 to X, as shown in Fig. 3.8b. Tig. 3.8
reduces to the form in Fig. 3.8c.

Clearly, from the discussion above, state variables that are not avail-
able can be generated by placing a frequency dependent element in the feed-

back path as demonstrated. If, for some reason, one of the state variables

cannot be fed back or cannot be generated, then only n-1 poles of the desired

closed-loop transfer function can be specified, where n is the order of the

system, the other pole falls where it may.



Figure 3.8 Block Diagram of State Variable Generation
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Gain Insensitive Systems

-

A system designéd by the method proposed in this section is
shown to possess two interesting characteristics: 1) The closed loop
transfer function is essentially independent of a gain K located as
ghown in Figure 3-1b. This is the characteristic that leads to the
design of certain nonlinear and time¥varying systems in later chapters,
2) The frequency domain criterion for an optimal control subject to a
quadratic performance index of the form of Equation 3-3 is always satis-
fied for some performance index. As mentioned previously, control systems
in general do not have this property.

The second item is considered first. A frequency domain crite-
rion for an optimal control subject to a performance index of the form
of Equation 3-3 has been shown by Kalman (1964) to be (for a controllable
system)

|14 e (a)p | 2 = 1+|ZTg>(s)1312 . (3-20)
Here $(s) = [sI—l}]_1 is the resolvent matrix of the plant to be con-
trolled plus any series compensation. Equations 3-1 and 3-2 are solved

for the open loop transfer function %(s) = KG(s). The result is

X(s)
Y(s) - R - T _
Ucs) = KG(s) = ¢ oy = ¢ 8(s)b. (3-21)

From Figure 3-1lc and Equation 3-21,

KTx(s)  k'x(s) Kk $(s)b
My (8) = gy = = = : ( 3-22)

Y(s8) STS(S) ST?(S)P
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Then,

KG(s)H, (8) = — ——— = k"8(s)b (3-23)

Equation 3-20 can now be written in the form

hre()E, (o) P = 1+ ) Tacodn I,
or

|1+KG(S)Heq(s)|2 > 1. (3-24)

Thus for a system to be optimal for some quadratic performance index,
it is necessary that inequality 3-24 be satisfied. This is rarely the
case in a system designed in the classical manner, as can be seen from
Figure 3-9, where curve a represents a typical open loop function,
KG(s)Heq(s). In order to be an optimum system, the plot of KG(s)Heq(s)
must remain outside the unit circle with center at -1. Such a system is
represented by curve b, It 1is shown below that systems designed by the
method of this section always satisfy this condition.

Since the design procedure of this section is extended to the
case where the gain K is nonlinear and/or time-varying in Chapter 4, it
is desirable that K not appear in tﬁe transfer functions used to derive
the expression for Heq(s).- In order to accomplish this, u' is defined
as shown in Figure 3-1lc (u' = Ku) and the relationship b = Kb' is used.

Equation 3-21 is replaced with

Y(s) - = T X(s) _ T ' _
U (s) G(s) c U (s) c Q(S)b ’ (3-21)
and Equation 3-22 with
T 1
H (9) = L‘.ﬂﬂb_ (3_22!)
R RIOLX

Equation 3-22' is now written in the form
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Figure 3-9, Nyquist Diagram of GHeq(jm) for a System that Would be

Considered Satisfactory in Terms of Conventional Criteria.
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kTEa(S)b'
detF(s) kTFa(s)b'
H (s) = = —= - (3-25)
eq cTFa( ' ET a(s)b'
detf(s)

where Ea(s) is the adjoint of the resolvent matrix E(s). The elements

of fa(s) contain terms of order (n-1) and lower in the numerator and

have no poles. If all the ki are non-zero, it follows that the numera-
tor of Heq(s) will have (n-1) zeros and, since the denominator of

Equation 3-25 is the numerator of G(s), that the poles of Heq(s) are

equal to zeros of G(s). For Class II systems, X(s) = [s}-é]-1(§'+§'s)u'(s)
and Equation 3-25 becomes

K'F () (b'4d's)

H (s) = . (3-26)
S RO IR

This is given here in order to show that for a svstem configuration such
as that of Figure 3-1Q, where b' and d' are related by a constant, there
will be a cancellation in Eq. 3-26 and Heq(s) will not have a pole

corresponding to the zero of G(s) at s = - %~ .
1

The desired Heq(s) is chosen so that the (n-1) zeros are equal to
(n-1) of the n poles of G(s). From the above discussion, it then follows
that
Kl

G(S)Heq(S) = o7a ° (3-27)

except for a system configuration such as that shown in Figure 3-¥0. In
this case, since Heq(s) does not have a pole corresponding to the zero

of G(s) at s = - L R
1
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1
K (Tls+l).

s+a (3-28)

G(s)Heq(s) =

In the above equations, -a 1is the pole of G(s) for which there is no
corresﬁonding zero in Heq(s), - ;l‘ is the zero of G(s) for which there

1

is no corresponding pole in Heq(s), and K' and K't, are the open loop

1
gains for the systems represented by Equations 3-27 and 3-28 respectively.
From Equations 3-27 and 3-28, it follows immediately that the
frequency criterion for optimal control is always satisfied, since the
polar plot of KG(s)Heq(s) never crosses into the left half plane, and
therefore remains outside the unit circle of Figure 3-9.
From Figure 3-1lc and Equation 3-27,

KG(s) - KN(s)
1+KG(B)Heq(s) _g_.'(:i;l [KK'+S+8]

(3-29)

where'%%s% = G(s), and D(s) has a zero at s = ~a., For the case repre-

sented by Equation 3-28, this becomes

Y KN(s)
R ESQL[s+a+KK't sHKK']
s+a 1

In both these equations, it is seen that the (s+a) factor in D(s) is
cancelled. It follows that for all cases (n~1) of the closed loop poles
are the same as (n-1) of the open loop poles. The nth closed loop pole
will have little effect on the nature of the response if K 1s made large
enough, since the residue and time constant associated with it become
negligible as it moves far out from the origin.

If the state variables are defined in such a way that the block
diagram of Figure 3-11 results, the expression for Heq(s) in Equations

3-25 and 3-26 can be written in the same form as that resulting from the
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Figure 3-1l. System with n First Order Transfer Functions in Series in

the Forward Path.
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block diagram formulation. Since b' (and d' if Equation 3-26 applies)

is non-zero only in the nth element, Heq(s) becomes

B (s) = ———, (3-31)
c

where Fna(s) is the nth colum of F7(s). With the previous assumptions

that cT =1 Q0 - <« e« « « 0,and that kl = 1, Equation 3-31 reduces

further to

a a . a
fnl (s)+k2fn2 (s)+ +knfnn(s)

H (8) =
eq a
fnl (s)

a a
k. f_,"(s) k_f__“(s)
.JL_EZ_____ peesynnn 7

a
fnl (s) f1 (s)

where fnia(s) is the ith element of Fna(s). Since for this configuration

at r rd -

fni (s) ) Xlxs) —1‘
a B X, (s)

fnl (s) i R

Equation 3-32 can be written as

Xl(s) -1 Xl(s) -1
Heq(s) = I+, 'QZTET SR i;fET
P k (3-33)
G,(s) 2 Gy(8)*+*G__,(s) n:

This has the same form as the expression for Heq(s) obtained from the

block diagram formulation by Schultz (1966). Thus the block diagram
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formulation is seen to represent a speclal case of the more general
matrix formulation.

Some restrictions on the Heq(s) that can be realized by feeding

back all the state variables are obvious. For example, in Figure 3-11,
the zeros of Heq(s) cannot be made equal to the poles of Gn_l(s)----

Gl(S) since, as seen from Equation 3-~33, this would require that kn = «,
Also, since the output is fed back directly to the input, it follows

that Heq(s) must always have a constant term and therefore camnot have

a zero root. In a system with one integration, the zeros of Heq(s) are
forced to equal the non-zero poles of G(s). In a system with two or more
integrations, Heq(s) cannot have (n-1) zeros equal to (n-1) poles of G(s).

On the basis of the above discussion, the following procedure is

proposed for the design of gain insensitive systems:

1. Describe the system in terms of meaningful, physical state
variables and assume that these are all available and are
fed back through constant gain elements.

2. Choose the desired closed loop response %(s).

3. Use a combination of series compensation and feedback to
insure that all but one of the oien loop poles correspond
to the desired closed loop poles. Normally, a pole at the
origin is left undisturbed so as not to change the type of
the systemn.

4, Use state variable feedback to force the zeros of Heq(s)
to correspond to the altered open loop poles, which are
the desired closed loop poles. The required values of the

ki can be found by calculating Heq(s) in terms of the ki
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by any of the above methods and equating this to the
desired Heq(s).

5. 1If all state variables are not available, use the calcu-
lated values of § to determine suitable minor loop com—~
pensation.

The following example illustrates the design procedure.

Example 3-5: The system of Example 3-1 is used. It 1is assumed that the
desired locations of two of the closed-loop poles are at s = -2 + j2.

The other closed-loop pole is not specified, but as shown above, moves
along the negative-real axis as K is varied. In Example 3-1, the numera-

tor of G(s) was found to be 10, The denominator is

s -1 61
det [sI-A] = det 0 s+l' -2 = g(s+l) (s+4) .
0 0 s+4
This gives - -
c(s) = 10K

s(s+1) (s+4) *

Some configuration for G(s) must be assumed before proceeding to step 3
of the design procedure. This is shown in Figure 3-12a. It is necessary
to feed back X, and x, as shown in Figure 3-12bto have open loop poles
at the location of the desired closed loop poles of s = -2 + $2. This
requires that

2 -2
s +48+8 = det

\ ]
s+4+K1k2

2 1 t
s +(5+Klk2 )s+4+K1k2 +2K1.
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Figure 3-12a. The Plant to be Controlled in Example 3+5.

|

Figure 3-12b. Feedback Configuration Used to Force the Open Loop Poles

to be at the Location of the Desired Closed Loop Poles.

1/ =

[N

Figure 3-12c. Method of Controlling the Plant of Example 3-5.
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Equating coefficients and solving the resulting equations gives

_ 2
Ky =3

Proceeding to step 4 of the design procedure, the final feedback con-
figuration required by Step 4 of the design procedure is shown in

Figure 3-12c.

s -1 0

0 s+l -2

0 5 s+3| |
2 _

Substituting into Equation 3-25 gives

k 2k2 2

Hy (8) = -—% [8(s+1)+ T s+ o 1. (3-34)

Equating this to the desired value of Heq(s),

k
Heq(s) = '—g‘ [52+48+8],

gives
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Applications of Gain Insensitive Design to Reactor Control

In this section, the gain insensitive design procedure outlined in

the previous section is applied to the control of the nuclear reactor

fﬁodel with reactivity feedback due to temperature, shown in Fig. 3.13 where

= 1nput reactivity

= feedback reactivity

o]
]

reactor power

n_ = steady state power level

A = weighted neutron precursor decay constant
A = neutron generation time

KT = constant relating power to reactivity feedback

a = heat removal coefficient
Observing Fig. 3.13 it is noted that the gain term, 2%, is a function of
the steady state power level and therefore will vary as the power level
changes. This variation will change the pole locations of the closed loop
transfer function, %L%%Y and thus the system dvnamics. The design crite-
rion 1s to determineia state variable feedback-control such that the svstem

dynamics is independent of power level. TFor purpose of illustration the

following values are assumed for the system parameters

8. - = ~9
A=0.1F=64 a= 2 Ky =5x10

It is further assumed that the controller dynamics can be neglected in
comparison to the time constants of the reactor. The assumption of a
perfect contreller with a tranafer function equal to 1 is reasonable in

space reactor systems whexe the controllers have a very fast time response.



P, 2 (s+x)
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s+4a

Figure 3.13 Point Reactor with Reactivity Feedback
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Applying state variable feedback control, under the assumptions above,
to the reactor model in Fig. 3.13 gives a system of the form shown in
Fig. 3.14a, which reduces to the system in Fig. 3.14b, where
2 5x107°

s+0.1 + k1 + g+2 (3-35)

Heq(S) =

If k1 and k2 are large compared to 10-9 then the term involving 10—9 can be

neglected and Eq. (3-35) reduces to

(k1+k2)s+0.1k

_ 1
Heq(s) = ot0.1 (3-36)
Letting kl = 1 and assuming the desired Heq(s) is
(k1+k Y(s+6.4)
(3-37)

Heq(S) = s+0.1

then comparing Eqs. (3-36) and (3-37) glves

Clearly with these values for k, and k2’ the assumption of neglecting the

1
terms involving 10_9 is valid, The system in Fig. 3.l4a now becomes of the

form shown in Fig. 3.15.

The transfer function of the system in Fig. 3.15, %%3% has poles at
n n
8 = -6.4 and s = - gg%hand a zero at s =-0.1. For values of if'qreater

than 104, the pole at - 64A has very little effect on system dynamics. For
a neutron generation time of A= 10_3 sec the corresponding power level

is 10 watts. Therefore, for power reactors, the system dynamics is
n

virtually independent of the gain —f'and thus the reactor power level.

.Since it is impossible to measure the state variable x,, the control is

realized by feeding back the reactor output through a lead lag network
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s+6.4 S

5x 107°

s+ 2

(a)

r + s+ 0.1

~k

s(s+6.4)
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(b)

Figure 3.14 Point Reactor with State Variable Feedback
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>|2

$+6.49

Figure 3.15 Equivalent Block Diagram for System in Figure 3.14




given by Eq. (3-37). The resultant design is shown in Fig, 3.16. Un-
fortunately, the design of Fig. 3.16 may not be the transfer function

desired, even though it is independent of the reactor power level.
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Figure 3.16 TFinal Reactor Control System Design
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This is the desired result and, with the assumption that all the state
variables are available to be fed back, completes the design procedure.

The closed loop transfer function 1s

Y 25K
r(8) = —3 25

(s°+45+8) (s+ —E-KRB).

This has two poles at the location of the modified open loop poles and

a third pole at s = - 2-;-{(RB. Thus if K is large, the third pole will

have little effect on the system response, because of the fast time con-
stant and small residue associated with it. The response is thus pri-
marily dependent on the pair of complex poles and independent of K.

Procedure When All State Variables Cannot Be Fed Back

’

This topic was discussed in Examples 3.4 and 3.5 and is
further emphasized in this section by working an example. In example

3-1, it 13 assumed that x, cannot be fed back. The coefficients are

2
determined as before and X, is fed back through a feedback function k3
XZ(S) ' X_(s) X, (s)
+ k2 XZ(S). This ratio of i;z;y—— can be found by noting that Us) can

be found in the manner discussed previously by letting v = x, in Equation

i

3-2. This simply means that c, is the only non-zero element in c. Per-

Xo(s)
forming this operation in the problem under consideration gives §Z?;7 =

i

2 2 k3(8+1)+2k2
prcg Therefore, Xq i1s fed back through k3 + k2 (s+l) e} . This

feedback function can be realized with a passive network. It is next
assumed that only the output can be fed back in Example 3-1. Again, the

feedback coefficients are determined as before, and x, is defined as shown

in Figure 3-7a and fed back through Hl(s), where
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Gp(S)

Figure 3-7a. Feedback Configuration When Only the Qutput Variable Can

be Fed Back.

GC(S)

Gp(S)

y=x

=

Figure 3-7b, An Equivalent System Using Series Compensation,

_ K
Gc(s) - 1+KH1(s) *
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Xz(s) X3(s)

e =& G
From the values of the example, this is found to be

10 5 10k2+5k3(s+1)

2 o) (o8 T X3 548 T (et D) (eil)

Hl(s) =k

This feedback function can also be realized with a passive network. 1In
fact, it can be combined with K to obtain a series compensation network
as shown in Figure 3-7b. This configuration is similar to that obtained
by the Guillemin method.

On the basis of the above discussion, the procedure to be followed
when one or more state variables cannot be fed back is to calculate the
feedback coefficients as though all state variables could be fed back and
to use the results in determining physically realizable feedback functions.
This is not the same as feeding back all the state variables for two rea-
sons: 1) It assumes that the transfer function between the two states
is known exactly and can be reproduced exactly. This is never true. 2)
Changes in the system parameters would affect the two feedback configura-

tions differently.

Summary

A method for designing linear systems for a desired closed loop
response by feeding back all the state variables has been developed from
the matrix representation of such systems. The procedure is straight-
forward and requires only elementary matrix operations and the solution
of n linear algebraic equations. It parallels the procedure of Schultz

(1966) which is based on the block diagram system representation. It is



72
used to develop a procedure for designing gain insensitive svstems which
leads to the design method for certain nonlinear and/or time-varving
systems developed in the following chapter.

Although the design procedure 1s referred to as the SVF method,
it incorporates the classical techniaque of series compensation with that
of feeding back all the state variables. The use of series compensation
makes it possible to add poles and zeros, thereby increasing the order
of the system and increasing the flexibility of the desipn method. It
does not make use of the information provided by the state variables.
The use of state variable feedback does make use of the information pro-
vided by all the state variables, and this information is fed back through
constant gain elements as suggested by the results of modern control theory.
An interesting characteristic of the gain insensitive systems designed by
the method proposed here is that they always satisfy the Kalman frequency
condition for optimality. Most systems designed by classical techniques

do not satisfy this criterion.



CHAPTER IV

DESIGN OF NONLINEAR AND/OR TIME-VARYING CONTROL
SYSTEMS VIA STATE VARIABLE FEEDBACK

Introduction

In this chapter, a proposed method of synthesis for single-~input,
single-output systems containing a single nonlinear and/or time-varying
gain which satisfies conditions 2-4 (or 2-5) and 2-6 is developed. This
is accomplished by compensating the constant linear portion of the system
in such a way that the Popov stability criterion discussed in Chapter 2
is satisfied. The design procedure-is a logical extension of the state
variable feedback design of linear gain insgnsitive systems as developed
in Chapter 3. Systems designed by the proposed method are shown to have
an infinite stability sector and to have a bounded output for bounded
inputs.

The degree of success with which the method can be used is dependent
upon the form of the particular system. This lack of generality is
characteristic of analysis and design procedures for nonlinear systems.
In its basic form, the method is limited to systems with one nonlinear and/
or time-varying gain located as shown in Figure 4-1. The limitation to
systems having no more than one integration noted in the discussion of
linear gain insensitive systems applies here also. It is shown in the
next chapter that the method is not applicable to particular cases other

than the simplest particular case due to structural stability problems.
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Thus the method in its basic form is applicable only for the principal
case and the simplest particular case. Modifications in the design
procedure which remove some of these restrictions in certain cases are
considered in Chapter 5.

The proposed method is applicable, in a practical sense, to
systems of any order. The determination of the feedback coefficients
requires the solution of (n-1) linear algebraic equations, where n is
the order of the linear system  G(s). Both the matrix and block diagram
formulations of the procedure are discussed.

The organization of the remainder of this chapter is as follows:
1) Por systems containing nonlinear gains, the basic design procedure
is developed, and the absolute stability properties and the closed loop
response of the resulting system are discussed. 2) These same three
topics are discussed with respect to time-varying (or nonlinear and time-
varying) systems. 3) The significant features of systems designed by

the proposed method are summarized.

The SVF Method for Nonlinear Systems

Figure 4-1 illustrates the basic feg@back configuration of the
compensated system, The system consists of a single nonlinear gain, N,in
series with a stable linear system, G(s). The nonlinear gain may appear
in the plant to be controlled as an undesirable characteristic, or it
may be intentionally introduced in order to achieve a desired result.

For example, a saturation element might be used to prevent signals in
some part of the system from becoming excessive. The system equations

are given in Chapter 2 and are repeated here.
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r i{'\ o N u = f(o) o) y

Figure 4-1., Basic Configuration for Controlling a Plant Containing

a Single Nonlinear and/or Time-Varying Gain.
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% = Axtbu (4-1)
u = f(o) (4-2)
o = -k xbT (4-3)
y=c'x (4-4)

As in the case of the linear systems of Chapter 3, since the state
variables are required to correspond to physical variables, Equation 4-1
might have the form

X = Ax+bu+di. (4-5)

The matrix formulation of the basic design procedure is exactly
the same as that developed for linear gain insensitive systems in the
previous chapter and is therefore not repeated here. It is noted that the
gain K appears nowhere in the transfer functions used in the calculation
of the k; for gain insensitive systems and therefore does not affect
Heq(s). Thus the fact that K is now assumed to be nonlinear has no effect
on the procedure for finding Heq(s). The only equations in the discussion
of Chapter 3 which cannot be applied in the nonlinear case are those for
the closed loop transfer function. The reference to closed loop poles in
the procedure is justified for the nonlinear case in the section on closed
loop response,

The block diagram formulation of the design procedure requires
that the block diagram be manipulated into the series form shown in
Figure 4-2a, where the Gi(s) are first order transfer functions. The
feedback configuration is shown in Figure 4-2b, and Heq(s) can easily be
determined by comparing this with the equivalent system of Figure 4-2c.

The result is



o N £(o)

li

X‘ X y
G, (s) “n G _1(s) nl----_Z_cl(s)

Figure 4-2a., Block Diagram in the Form of a Series of First Order

Transfer Functions.

+ £ X, _ X
- 1w E2 oo e guebnteam-22d e o)

n

k-1

— —————

Figure 4-2b., Method of Controlling the System of Figure 4-2a,

r T g £(0) X Xn-1 )

N Gn(s) Gn-l(s) - Gl(s)

Figure 4-2c. An Equivalent System for Figure 4-2b.

Heq(S) e
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X, (s) | -1 X -1
1'° |2
= 1+ : — -
Heq(S) 1 kz XZ(S) +.o-+kn X (S) , (4 6)
: n
which is the same as Equation 3-33 developed from the matrix
representation for this particular configuration.
Absolute Stability of the Resulting System
The two possible open loop transfer functions for a system
designed by the proposed method are given in Equations 3-27 and 3-28
and are repeated here:
K'
G(s)Heq(s) -t (3-27)
K'(Tls+1)
—_— . (3-28)

G(S)Heq(s) = s+a

The modified plot used in the interpretation of the Popov criterion
never crosses into the left half plane for either of these functioms.
Therefore, the Popov line can be drawn through the origin, indicating
that the sector in which the system is absolutely stable for the type
nonlinearity being considered includes the entire first and third

quadrants.

Closed Ldop Response of the Resulting System

A mathematically equivalent system is derived for studying
input-output relations of the closed loop system. The linear system
G(s) is rearranged as shown in Figure 4-3a, where Ga(s) is the first
order transfer function of Equation 3-27 or 3-28, G'(s) is an (n-1)st

order transfer function given by

Te) = —0C8) -
G'(s) K”Ga(s)’ (4-7)



r + o N £(o)

G,(s)

%

Hoq(®)

G'(s)
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Figure 4-3a. The Equivalent System of Figure 4-1 Showing Heq(s) and

with the Linear Part Rearranged.

r + o £(0)

G,(s)

4%

G'(s)

Figure 4-3b. The Equivalent System of Figures 4-3a and 4-1 for

Determining Input-Qutput Relations.
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and K" is the coefficient of sn“1 in Heq(s). Figure 4-3a is next
represented by the equivalent system of Pigure 4-3b, which 1s used in
the analysis that follows. The following observations are made con-

cerning the equivalent system:

1. The state variables xé,---, x& are different from
those of Figure 4-1, Only g, f(g), and the input and
output variables are the same.

2. Changes in system parameters will affect the systems
of Figures 4-1 and 4-3 differently.

3, The equivalent system consists of a first order nonlinear
system with unity feedback in series with an (n-1) st order
stable linear system. Therefore, if it can be shown
that the output of the nonlinear portion is bounded for
a bounded input, it follows that the output, Xy, of the
actual system represented by Figure 4-1 is also bounded.

4, The equivalent system indicates that the (n-1) poles of

G'(s) are also poles of the closed loop system.

.

The Second Method of Liapunov is used to show that the output
is bounded for a bounded input. For generality, it is assumed that G,(s)
has the form of Equation 3-28. The system equations for the nonlinear

portion of the equivalent system are then

k! = —ax'+K' f(o)+K'rlf(o) (4~8)

g = r—x; . (4-9)
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A Liapunov function of the form

' 2

V= X (4-10)
is chosen, It follows that

J = B PR e 1 . -

Vo= 2x! [-ax)+K'f(0)+K rlf(o)]. (4-11)

From Equation 4-9 and the nature of the nonlinearity as given by
conditions 2-4 through 2-6, it follows that V will always become negative
when r is bounded if the magnitude of xﬁ becomes large enough. This is
also true for the cases where Ga(s) has no zero (tl = 0) and where
Ga(s) has an integration (a = 0), or both. Thus the output of the non-
linear portion of the equivalent system is bounded for all cases when the
input 1s bounded., Since the system from xé to the output y of the
equivalent system is a stable linear system, it follows that the output
of the closed loop system of Figure 4-1 is bounded for bounded inputs.
Moreover, since the output of the nonlinearity is the same in the
equivalent system of Figure 4-3b and in the actual system of Figure 4-1,
all the physical state variables are bounded, or the'system is Lagrgnge
stable, .
Under certain quite restrictive conditions, an analytical
solution for the output of the nonlinear portion of the equivalent system
can be obtained. A sufficient condition for obtaining such a solution is
that the variables in Equation 4-8 can be separated and the resulting
integration carried out. This can be accomplished in the simplest

particular case (a = 0) witht, =0 if the input is a step function and

1

d
f(©) is such that ??ﬁ%;i can be integrated, where M is the magnitude of

the step input., The following example illustrates the procedure.
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3
Example 4-1: It is assumed that r = Mu(t), f(o) =0 , a =0, and T, < 0.

Then Equation 4-8 may be written in the form

x' (t) t
r n
- S dt . (4-12)
/ Gi-x1)3
xA(O) 0

Carrying out this integration gives

1 1 - e

z(u-xr'l)z 2 (M—xr'l(O)z

Rearranging and solving for xﬁ gives the result

v, —_— 1
x! =M +3 a2t (- 1 - 7.
2t (4-13)
tx! )Y

As t becomes large, xé

+ M, the equilibrium state of the system for
this particular input.
The conditions necessary for obtaining an analytical solution
for x& are so restrictive that some other means of determining this output
vof-the nonlinear part of the equivalent system is desirable. Since the
ﬁonlinear part is a first order system, it is always possible to find
the output by use of the basic graphical progedure known as the isocline

method when the input and the nature of the nonlinearity are known. This

is illustrated by the following example.

Example 4-2: It is assumed that Ga(s) = i-and that £{(og) is a saturation
type gain described by Figure 4-4a, The nonlinear portion of the
equivalent system is shown in Figure 4-4b. This is all the information

needed since this example is concerned only with determining the response
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4’
£(9)

= e cm ewe

g -

Figure 4-4a, Nonlinear Gain Characteristic for Example 4-2.

r + o f(o) x!

Figure 4-4b. Nonlinear Portion of the Equivalent System for Example

4-2.
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of the nonlinear portion of the equivalent system. The isocline method
is used to determine this response for a sinusoidal input, r = 7 sin t.
From Figure 4-4b,

0 = 7 sin t-xﬁ, (4-14a)

k! = £(0) . (4-14b)
From these relationships and the nonlinear characteristics shown in

Figure 4-4a, the following values of i& are determined:

1. VWhen x; >1+n7gsint, = -1,

(N
n
2. VWhen x; < -1+ msint,

k! = 1.
n

3. When x; h+msint for -1 <h <1, = .h,

X
n
These values of i; are used to determine x; graphically as shown in
Figure 4~5. This response is the input to the linear portion of the
equivalent system, and the output can now be found by linear methods.
The ability to show that the closed loop system has a bounded
output for bounded inputs and to determine the output for a specific
input is a significant advantage, as this is not generally possible with
nonlinear systems., The next example illustrates the application of the
basic design procedure and the calculation of the closed loop response

of the resulting system.

Example 4-3: The block diagram of the system to be controlled is shown
in Figure 4-6a. This system might represent, for example, a DC motor
driven by an amplifier which saturates for large inputs. In this case

Xy represents position, x, velocity, and x, the field current. The

2 3

saturation level might be inherent in the amplifier or it might be built
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Figure 4-6a,

£(0) 4

u=£(0) 5 X5 1 X, 1 y =%
s +5 + 1 s
System to be Controlled in Example 4-3.
)
X2 |
" 5 Bl 1 201 |¥°7
1 s +5 s + 1 s [

Figure 4-6b.

Compensation of the System to Force the Open Loop Poles to

£(9 +

be Equal to the Desired Closed Loop Poles.

» J-

Figure 4-6c.

£(o)

10

Method of Controlling the Plant of Example 4-3.

y =%

s(s + 4s + 13)

Figure 4-6d,

Heés)

Equivalent System for Figure 4-5c.

1
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into the amplifier to prevent the velocity from exceeding some maximum
value. An application for such a system might be to position an antenna
in a satellite tracking system. The activating signal, o, in such a
system can be very large during the process of locating the target, thus
driving the amplifier well into the saturation region. Once the target
is located and being tracked,|c|is assumed to be small enough that the
system operates in the linear region. Thus the system must be stable
for any activating signal and should respond quickly for small activating
signals. In order to achieve the desired response, it is assumed that
the gain of the amplifier is high in the linear region and that the
closed loop system has poles at s = - 2 + j3, The first step in the
design procedure is to compensate the system as shown in Figure 4-6b
so that the open loop poles are at the desired location of the closed
loop poles. By the method of Chapter 3, it is determined that ké =
-5 and K1 = 2 result in the open loop poles having the desired locations.
The state variables are then fed back as indicated in Figure 4-6c. In
the equivalent system of Figure 4-6d, y

1

+ (l+k—§)s + ;(-3—]. (4-15)

2
Heq(s) = k3s(s+1) + kys + 1 =k, [s

In order to realize the desired closed loop-poles, the required Heq(s)
must have zeros at s = -2 + j3, This gives

Hog(s) = ky [6° +4s +13, (4-16)

Equating the coefficients of Equations 4-15 and 4-16 gives

K
1*1'2"’
3

-l];_‘= 13.
3
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Thus the required feedback coefficients are

ky =13

k, =3_,
13

It has already been shown that the system when designed in the
above manner will be absolutely stable regardless of the gain in the
linear region of operation. 1In addition, the location of the two
complex poles is independent of the gain. Therefore, the gain can be
made as high as desired in the linear region, and the resulting system
has the desirable characteristics of stability for any error signal and
the desired response in the linear region of operation,

While the system is in the linear tracking mode, the closed loop

transfer function is

Leg) = 10K
R (82 +4s+13)+ —i% K(s2+48+13)
10K , (46-17)

(s>+45+13) (s+ 13 K)
where K is the amplifier gain in the linear region. This indicates that

1

the closed loop system has poles at 8 = -2 + j3 and s = d%% K. Both the
time constant and the residue associated with the real pole are very
small, and the nature of the system response is therefore determined by
the pair of complex conjugate poles if K is large. The velocity error
coefficient is also determined Fo a good approximation by the complex
conjugate poles 1if thé gain in the linear region is high., This is given

by (Truxal, 1955)

3
1 . L _4 L 13 (4-18)
K, - L Pj=13+101('

e
—
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This indicates that as K becomes large, Kv is determined by the location
of the complex conjugate poles. The significance of these results is
that the system can be designed for the desired characteristics in the
linear region without being bothered by stability problems when operating
in the nonlinear region.

The equivalent system for studying the closed loop response is
shown in Pigure 4-7a. For the purpose of illustrating the procedure
for calculating the response from this equivalent system, it is assumed
that the amplifier has the characteristics shown in Figure 4-7b, It is
also assumed that at t = 0, the antenna is pointing in a direction 10°
ahead of the satellite in the line of travel and that the satellite is
moving with respect to the antenna at the rate of one degree per minute,
The location of the satellite is taken as the reference position. Thus
the system begins operating in the saturation region, with an activating
signal of -100. The output, xé, of the nonlinear portion of the equiv-
alent system is found by the isocline method and is shown in Figure 4-8,
The reference signal, r = t, is also shown inthis figure. When
-+t o<xy< 1+, |o]<1 and the system is operating in the linear
region. The graph shows that the system operates in the linear region
after approximately 0.4 seconds. With the xé of Figure 4-8 as the input
to the linear portion of the equivalent system, the output of the closed
loop system can be found. One way of calculating this output is to
approximate the input to the linear portion of the equivalent system by
a piece-wise linear function. Due to the low-pass characteristics of ﬁ
most control systems, this approach will usually yield a good approxi-
mation to the output, Where this approach is not practical, graphical

convolution can be used.
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r + o £(9) | 10 x:; 13 y =%
-z .
13s s +4s8 + 13

Figure 4-7a. Equivalent System for Determining the Closed Loop Response

in Example 4-3.

30 m———-

Figure 4-7b. Nonlinear Amplifier Characteristics for Example 4-3.
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In this example, xé, can be approximated by the function

xé(t) = 10u(t)-23tu(t) + 24(t-.42)ult-.42). (4-19)

(It is noted that u(t) represents a unit step function and is not the
same u as 1s used for the system control function throughout this

dissertation.) From Equation 4-19,

_0428
X! (s) = 0 _ 23, 28 . (4-20)
3 8 S2 S2

Combining this expression with the transfer function of the linear
portion of the system and noting that both xé(t) and y(t) are equal to

10° at t =0 gives, after rearranging,
-.42s

23 17.1 5.4+7.1s 24e
+ - 2

Y(8) = - =5 +
s2 8 92+4s+13 s

-.42s N (5.6+7.48)e” " 428

8 92+As+13

7.4e (4-21)

From this equation, after combining terms and simplifying,
y(t) = 17.1u(t)-7.4u(t-,42)-23tu(t)+24(t-.42)u(t-.42)
- 7=6-e—2tcos(3t+22;5°)u(t)
+ 8.26e=2(t=42) (o5 [3(t-.42)422.5u(t-.42) . (46-22)
Equation 4-22 is the approximate output of the system operating under
the assumed conditions. The graph of this output is shown in Figure 4-9.
The system of Example 4-3 was simulated on an analog computer,
and the resulting response shown in Figure 4-10 agrees reasonably well
with the calculated response shown in Figure 4-9. The gain in the
linear region was varied between 12 and 700 with the only noticeable
change in the response being a small increase in the overshoot as the gain
was increased. Thus the results of the simulation indicate that the

system is indeed insensitive to large variations in the gain.
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The SVF Method for Time-Varying Systems

In this section, the application of the proposed design procedure
to time-varying (or time varying and nonlinear) gains is considered.
The system equations are the same as in the nonlinear case except that

Equation 4-2 becomes
u = f(o,t), (4-2")

The design procedure for time-varying systems is exactly the same
as that for nonlinear systems. Equations 3-27 and 3-28 indicate that
the modified plot of G(s)Heq(s) for the resulting system never crosses
into the second or third quadrants. Therefore the Popov criterion for
time-varying systems as given in Equation 2-17 is always satisfied, and
the system is absolutely stable for all time-varying (or time-varying
and nonlinear) gains of the type being considered. An equivalent system
for input-output relations can be derived in the same manner as for non-
linear systems, with the only difference being that the gain in the system
of Figure 4-3b will be time-varying. Because of the restrictions on the
time varying gain as given by conditions 2-4 through 2-6, Equation 4-10
can again be used as a V function to show that the output is bounded for
bounded inputs.

The system configuration of Example 4-3 might also be used as
an illustration of the application of the design procedure to time-
varying systems. 1In fact, the feedback coefficients calculated in this
example would be the same for any nonlinear and/or time varying gain
(with the exception noted below) as long as the desired location of the
closed loop poles remain constant, The only exception is that the gain
cannot be equal to zero for o # 0. This restriction follows from the

Popov stability criterion for the simplest particular case.
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method of designing linear gain insensitive systems has
d to develop a design procedure for a certain class of non-

r time-varying systems. The procedure is based on realizing

a desired equivalent feedback transfer function, Heq(s), by feeding back

all the stat

e variables in the proper linear combination. The resulting

system has the following significant features:

1.

The absolute stability sector, as determined from the Popov
theorem, includes the entire first and third quadrants.

The output of the closed loop system is bounded for bounded
inputs.

The closed loop system can be represented by an equivalent
system for input-output relations consisting of a first order
nonlinear and/or time varying portion in series with an (n-1) st
order stable linear portion. This equivalent system can be
used to find the approximate output for a given input.

In certain cases, the dominant time constant, band width,

and overshoot of the closed loop system for any input are
determined primarily by the constant linear portion of the
equivalent system and are essentially independent of the non-
linear and/or time varying gain.

In systems where the operation is linear for normal control
signals but nonlinear for large control signals, it is possible
to design for the desired operation in the linear region
without having to worry about system stability for large

control signals.
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6. The closed loop system is linearized to the extent that
{n-1) of the closed loop poles are equal to (n-1) of the
open loop poles of the linear plant, independent of the non-

linear gain.

The design procedure, unlike most nonlinear and/or time-
varying design methods, presents no real computational difficulties,
It requires the solution of n linear algebraic equations where n is the
order of the linear part of the system G(s). It is therefore applicable,
in a practical sense, to high order systems,

In general, series compensation cannot be used in the basic
design procedure unless such compensation can be located in the system
so that the nonlinear and/or time varying gain remains in the relative
position in the system shown in Figure 4-1., In the next chapter, consid-
eration is given to some practical aspects of the design procedure and
to its possible extension to include systems to which the basic procedure

cannot be applied.



CHAPTER V
PRACTICAL LIMITATIONS AND EXTENSIONS
OF THE DESIGN PROCEDURE

Introduction

The design procedure of the previous chapter 1s based on the
assumption that all the state variables can be measured and fed back
in the proper linear combination to force the zeros of the resulting
Heq(s) to be exactly equal to n-1 of the poles of G(s). Since exact
pole-zero cancellation is never possible in a physical system, the
effect of small differences between the.zero locations of Heq(s) and
the corresponding pole locations of G(s) is of interest. This question
1s considered in the section on structural stability at the beginning
of this chapter.

The last part of this chapter 1s concerned with possible methods
of extending the design procedure to certain svstems where the basic
procedure cannot be used. TFirst, possible methods by which the basic
procedure can be extended to systems in which the nonlinear and/or
time-varying gain is not located in the position shown iIn Figure 4-1
are discussed. Then the possibility of using the design procedure to
design systems having a finite stability sector in certain cases where
an Infinite sector of stability cannot be achieved 1s considered. Such
a reduction in the sector of stability results in less stringent con-

straints on the open loop gain, G(s)Heq(s).

98
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Structural Stability of the System

The discussion of stability in the previous chapter is based on
the premise that the zeros of Heq(s) can be made to occur at the exact
iocations of the poles of G{s). Since perfect pole-zero cancellation
cannot be achieved in a physical system, there will be differences in
the locations of the zeros of Heq(s) and the corresponding poles of G(s).
As a consequence, the expressions for G(s)Heq(s) given in Equations 3-27
and 3-28 will have n-~1 additional poles and zeros. These additional
critical frequencies have the property that the zeros are almost equal
to the poles. Thus the question of interest becomes: 'How useful is
the approximation of Equations 3-27 and 3-28 in a physical system?”" The
answer to this question lies in the structural stability properties of the
system. If it can be shown that small changes in the system parameters do

not radically affect the nature of the system response, then results ob-

tained from Equations 3-27 and 3-28 should be valid approximations to the

The effect of small differences in the corresponding poles and
zeros of G(s) and Heq(s) on the absolute stability of the system is con-
sidered first. Using the Popov stability criterion, analytical results
are obtained which indicate that the absolute stability 1is not greatly
affected by small changes in system parameters except in those cases where
closed loop poles occur on or near the imaginary axis. These results
indicate how much variation in the pole and zero locations can be toler-
ated without the absolute stability properties of the system being

seriously affected.
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The question of absolute stability is investigated from the stand-
point of the additional phase shift introduced into G(S)Heq(s) by small
differences 1n corresponding pole and zero locations. Zeros of Heq(s)
and the corresponding poles of G(g) to which theyv are nearly equal are
referred to as pole~zero pairs in the discussion which follows.

Only the effect of a single pole-zero palr is considered for poles
and zeros on the real axis. TFor complex conjugate poles, two pole-zero
pairs must be considered. The results can then be used to determine the
effect of differences in the zero and pole locations of any pole-zero pair
in the system.

The diagram of Figure 5-1 1s used to determine general results
for arbitrary pole-zero locations which are then used in discussing more
specific cases. From Figure 5-1 the total phase shift of the two pairs
of complex conjugate poles and zeros 1s

12 -1 2-c 1 4d-2 -1 e~2

+82 = tan 2 -tan = — —tan - + tan 7:—, (5-1)

6 =o,-8 b

17%2
The first two terms represent the phase shift contributed by the pole-
zero pair in the upper half plane, and the last two terms represent the
phase shift contributed by the lower half plane pole-zero pair. Since

the expressions for the phase shift contributed bv the two pole-zero pairs

are similar, the last two terms are neglected for the present, giving

-1 2 -1 2-c
6, = a;,-8, = tan = = ~tan = . (5-2)
From this,
do
d21 = 2 - b 5= lz(a—b)—23c1+a(b2+c2-ab). (5-3)

32+22 b2+(z—c)
Setting Equation 5-3 equal to zero gives the following expression for the

values of & at which 61 reaches its extreme positive and negative values:

%a‘&_
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Figure 5-1. Diagram Used in Determining the Phase Shift Contributed by

the Pole-Zero Pairs.
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. 2 .2
g = act ab(a-b) “+abce . (5-4)

a-b

oy

The maximum phase shift due to the complex pole-zero pair can be found by
substituting the value of £ found from Equation 5-4 into Equation 5-2. The |
maximum total phase shift contributed by the two complex conjugate pole-
zero pairs will always be less than twice this value. iW:lth c=0,
Equations 5-4 and 5-2 can also be used to determine the maximum phase
shift due to a pole-zero pair on the real axis.

Equations 5-2 through 5-4 are now used to investigate specific
cases of pole and zero locations.
Case I: The pole and zero are real with a = 0.9b, giving a 107 difference
between the pole and zero locations. From Equation 5-4 the maximum phase

shift occurs at

2= + '0.9b% = + 0.95b.

Since only positive values of frequency are of interest, only the negative

value of 2 is considered. Substituting into Equation 5-2 gives

6 = -tan Y(1.06) + tan 1(0.95) = -3.2°. (5-5)
max

For b = 0.9a, the maximum phase shift has the same magnitude but opposite
sign. Thus the maximum nhase shift for a 107 difference in the locations
of a real axis pole and zero is 113.20.

Case II: There are two complex conjugate pole-zero pairs with ¢ = 0 and

the ratio between a and b = 0.9, Here, the magnitude of the total phase

shift from the two pole-zero pairs is always less than twice that of

Equation 5-5, or 6.4°. This is a conservative upper limit for the phase
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shift, as it will in general be considerably less, since the maximum
from the two pole-zero pairs will not occur at the same frequency.
Cage I11: There are two complex conjugate pole-zero pairs with a = 0.9b
and ¢ = 0.1b. From Equation 5-4, the maximum phase shift caused by this
difference in the upper half plane pole-zero pair is found to occur at
2 = 0.44b., Substituting this into Equation 5~2 indicates a maximum phase
shift of 7.2°. Since the maximum phase shift from the pole-zero pair in
the lower half plane is no more than this, the maximum phase shift con-
tributed by the complex conjugate pole-zero pairs is seen to be less than
14.4°, Again this is a conservative upper limit for the maximum phase
shift, which will in general be considerably less.
Cagse IV: There are two imaginary pole-zero pairs with a = b = 0. The
total phase shift for positive frequencies comes from the pole-zero pair
in the upper half plane. From Equation 5.1, this is

lim

9 = a,b>0 [tan

B R i Sl R (5-6)
a

This is always zero except for frequencies between the pole and zero,
where 6 = + 180°. i
The absolute étability of a system designed by the proposed method
can now be considered without the unrealistic assumption that the zeros of
Heq(s) can be made exactly equal to poles of G(s). From the nature of the
ideal open loop transfer function, G(s)Heq(s), as given by Equations
3-27 and 3-28, it is apparent that not only is the Popov stability crite-
rion of Equations 2-7 or 2-8 satisfied for any nonlinear gain of the type

being considered, but it will continue to be satisfied for any change in

G(s)Heq(s) that results in a change in the phase shift of G(s)Heq(s) of
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less than 90°. 1In fact, the Popov criterion for nonlinear systems can
be satisfied in some cases for maximum changes greater than 9n° if this
maximum change does not occur at the. same frequency as the maximum phase
shift in the 1deal case, or if the sign of the change 1s such as to re-
duce the total phase shift,

Figures 5-2a through 5-2e illustrate further the effect of dif-
ferences in the locations of the pole and zero of a pole-zero pair. A
third order system with one integration is used in these examples. The
pole-zero plot is shown on the left and the corresponding modified fre-
quency plot on the right. Figures 5-2d and 5-2e indicate that the rela-
tive displacement of the pole and zero is important for pole-zero pairs
near the imaginary axis. Figure 5-2d also indicates the possibility of
designing for absolute stability in a finite sector where it is not
possible to include the entire first and third quadrants in the stability
sector.

Systems with time-varying gains must satisfy stronger conditions
for stability than those for nonlinear gains. Equation 2-~17 indicates
that the modified plot must never cross into the second or third quad-
rants if the stability sector of the system'is to be Infinite, TFigures
5~2b and 5-2c suggest two possible approaches in the time-varying case-
1) Intentionally displace the zeros of Heq(s) as shown in Figure 5-2b,
2) Design for a finite stability sector. In most cases, infinite
stability sectors are not required.

The above discussion leads to the following conclusions concerning

the absolute stability of a physical system designed by the proposed method:
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Figure 5-2e

Figure 5-2, Illustrations of the Effect of Differences in the Locations
of the Pole and Zero of a Pole-Zero Pair. The Pole-Zero Diagram of a
Third Order System is shown on the Left, and the Corresponding Modified

Frequency Plot is Shown on the Right.



107

1. Except for systems with .pole-zero pairs on or near the
imaginary axis, the absolute stability sector for systems
with nonlinear gains is infinite.

2, VWhere absolute stability cannot be assured for an infinite

gector because of pole-zero pairs near the imaginary axis
it might be possible to design for a finite absolute sta-
bility sector.

3. In the time-varying case,‘it is necessary to

displace the zeros of Heq(s) in the proper direction to assure
an infinite absolute stability sector.

The closed loop response was determined in Chapter 4 by making use
of an equivalent system consisting of an (n~l1)st order linear part and a first
order nonlinear and/or time varying part in series. When the zeros of
Heq(s) are not exactly equal to the poles of G(s), the nonlinear and/or
time-varying part of this equivalent system has the form shown in Figure
5-3. 1In this equivalent system, the zeros are almost equal to the corres-
ponding poles, and the question of structural stability again becomes
important in determining whether the output of the equivalent svstem is
a valid approximation to the closed loop odﬁput of the actual system.
Because the nonlinear and/or time-varying gain cannot be separated into
a first order part of the equivalent system, it does not appear possible
to determine general analytical results which assure that the equivalent
system of Chapter 4 is valid for a physical system. However, all the
known properties of the system indicate that the equivalent system is a

good approximation to the physical system. Certain analytical results
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Figure 5-3. The Form of the Nonlinear Portien of the System When the
Zeros of Hpq(s) are not Exactly Equal to the Poles of G(s). The Gi
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can be obtained for specific systems. For example, a result of Zames
(1966) is used to show that the output of the system is bounded for
bounded inputs if the stability sector is not required to be infinite
and 1f only the principal case is considered.

The results reported bv 7ames give sufficient conditions for a
bounded closed loop output when the input is bounded. The conditions
apply to the type system considered in this dissertation 1if all the poles
of G(s) arein the left-half plane, The result of interest is called the
Circle Theorem and is given here in the following form:

If the nonlinearity is inside a sector {K,,K,}, and 1if the fre-
quency response of G(s) avoids a "eritical region" in the complex
plane, then the closed loop output is bounded for bounded inputs:

if K3 > 0 then the "critical region" is a disk whose center is
halfway between the points *_% and ~ . and whose diameter is
1 2
greater than the distance between these points. If K, = 0, the
condition corresponding to this "ecritical region" is &e[G(jw)]
>=-1 + 6, where § > 0.
Ky

A graphical illustration of the above theorem is given in Figure

5-4. TIf f(o) vs. 0 and G(jw) lie in the shaded regions, then the closed
loop response is bounded for bounded inputs. In the discussion of the
Popov criterion in Chapter 2, Kl was taken to be zero and K corresponds
to KZ'

From the above theorem and preceding discussion it follows that
a system designed by the proposed procedure, in which G(s) has no poles
on the imaginary axis, will have a bounded closed loop response for

bounded inputs 1f the nonlinearity is confined to an appropriate finite

sector. Since the gains in practical systems are not infinite, the
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£f(o)

Im{G(jw)]

Re[G(jw)]
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Figure 5-4. TIllustration of the Circle Theorem. If f(o) vs.
o and G(jw) lie in the Shaded Regions and 1f the Nyquist Diagram
of G(jw) does not Encircle the Critical Disc, the Closed Loop is

Bounded.
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sector determined from this theorem with appropriate tolerances placed
on the pole and zero locations will be all that is required in many
cases.

The equivalent system of Figure 5-3 will now be considered. It
is assumed that none of the complex conjugate pole-zero pairs are near
enough to the imaginary axis to cause excessive overshoot to occur or
to cause the linear system to go unstable for small changes inthe pole
and zero locations. TFrom this assumption and the fact that the transfer
function between x; and x! is linear, stable, and approximately equal to

1

unity, one 1s led to expect the response at xi to be very nearly equal to
the output, x;, of the nonlinear portion of the equivalent svstem. Rut
this is exactly the case in the equivalent system of Chapter 4, so it
appears possible to use the equivalent system with a high degree of con-
fidence except in those cases having closed loop poles on or near the
imaginary axis. The confidence in this conclusion 1s increased stiil
further in those casés where both the input and the nonlinear and/or time-
varying characteristic are relatively smooth. The requirement that the
closed loop poles be constrained to be away from the imaginary axis is in
agreement with the results of the discussio; on absolute stability.

The final conclusion from the above discussion is that systems
designed by the proposed method can be expected to be structurally stable
except in those cases having closed loop poles on or near the imaginary
axis., Analytical results are given which indicate the extenf of the effect

of small changes in the pole and zero locations on the absolute stability

of the system. General analytical results were not obtained to indicate
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the extent of the effect of such changes in the case of the closed loop
response, but reasons are given for expecting the equivalent system
developed in Chapter 4 to give a good approximation to the actual closed
loop response. The results of analog computer simulations, one of which

is reported in Example 4-3, support this conclusion.

Effect of the Location of the Nonlinear and/or Time-~Varving Gain

The basic design procedure of feeding back all the state variables
in order to realize a desired Heq(s) is not applicable when the nonlinear
and/or time-varying gain is located arbitrarily in the system. The reason
for this is illustrated by Figure 5-~5a. In this svstem an equivalent
feedback function Heq(s) from the output to the input cannot be obtained
independently of the gain N. No general procedure for handling such prob-
lems appears to be best for all systems. Consequently, it is treated here
by suggesting the following possible procedures based on the systems shownm

in Figures 5-5a through 5-5c.

Method 1: If the gain N is located as showm 1in Figure 5-5b and 1its output

can be measured and fed back, the equivalent feedback function is

Heq(s) = k4(3+b)(s+c)(s+d) + k3 (st+e) (s+d) + k2 (std) + 1,

and the result is the same as when the gain is located as shown in Figure

4-1, Therefore the basic procedure applies.

Method 2: If the gain N is a saturation type, it is in some cases possible

to introduce another saturation type gain at the input which will prevent
the original nonlinearity from saturating for any input. The system is
then equivalent to a system with one nonlinearitv at the proper location

for applying the proposed design procedure. This method could also be
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Figure 5-5a. System in Which Heq(s) is not Independent of the Nonlinear

Gain, N.’(G(S)=G1(S)G2(s)).

1 o N £@) =x4 1 Xq 1 X9 1 X
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k)
Figure 5-5b. System Configuration for Method 1.
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Figure 5-5c.

System Configuration for Method 2.
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used in some cases to extend the design procedure to svstems with multi-
ple saturation type nonlinearities. This approach could not be used
when pure integrations are present between the input and the nonlinearity,
Method 3: TFor a feedback configuration such as that shown in Figure 5-5c,
the equivalent feedback function is

Heq(s) = ka(s+a)(s+b)(s+d) + k3(s+a)(s+d) + k2(5+d) + 1.

This is the same type of equation as that obtained from the basic feedback
configuration of Figure 4-1, so that the ki can be found in the same manner
as before. From Figure 5-5c¢ and the equation above, it is apparent that
Heq(s) cannot have zeros equal to the (n-1) poles of G(s) that are outside
the inner loop with k4 as the feedback element, as this would require that
k4 = o, The objection to this method is that it is not usually possible

to feed back into the required points in the system. Also, since u #-ng,
the matrix formulation of the basic procedure cannot be used here. An
advantage is that it allows the extension of the basic procedure to systems
where series compensation is desirable and must be placed in front of the
nonlinear and/or time-varying gain. In this case it will often be possible
to feed the output back to any point in the compensation network.

An equivalent system for input-output relations similar to that

developed above can be derived for all these methods. The only difference

from the previous equivalent system is that the single order nonlinear and/
or time-varying part will appear in the middle of the linear part for
Methods 1 and 3.

The determination of the feedback coefficients in Methods 1 and 2
is no different from the basic procedure. Once the e#pression for Heq(s)

has been determined from the block diagram in Method 3, the calculation
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of the ki is accomplished as in the basic design procedure. Tt is
interesting to note that in the basic procedure information concerning
all the state variables is fed back to the input in order to establish
the actuating signal, while in Method 3 the output is fed back so as to
establish desired control signals at certaln points in the system.

In many actual design problems where the basic procedure cannot
be used, a combination of the above methods might be useful. The follow-
ing example illustrates the procedure of Method 3.

Example 5-1: The fixed plant of Figure 5-6a is used to illustrate the
procedure of Method 3. It is assumed that closed loop poles are desired
at s = - %’i j(g— . The first step in the design is to compensate the
fixed plant as indicated in Figure 5-6b so that the open loop poles will
be at the desired location of the closed loop poles. The reauired feed-

back configuration is shown in Figure 5-6c. Comparing this with the

equivalent system of Figure 5-6d gives

- rd - 2 . - . -\
neq\s) = x3(s + g) + xzs+1, (5-7)

The desired transfer function must have the form

By (o) = k3{32 + s+1] . (5-8)

Equating the corresponding coefficients of Equations 5-7 and 5-8 and

solving the resulting equations gives

This set of feedback coefficients produces the desired closed loop poles
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The Plant to be Controlled in Example 5-1.

Figure 5-6b.,

m |

Compensation of the Plant of Example 5-1 to Force the Open

Loop Poles to be at the Desired Location of the Closed Loop Poles.

r N . o (=] |
5 s +1 N s +2
—1k3
k2
Pigure 5-6c, Method of Controlling the Plant of Example 5-1,
+ y =x
r 7 1 g N f (o) 1 1
s +s +1 s +2
Ho o(5)

Figure 5-6d.

An Equivalent System for Figure 5-6c.




117

at s = - =+ 3 = , independent of the nonlinear and/or time-varying

/3
2

N fi=

gain,

One point of interest 1s that the feedback shown in Figure 5-6b
changes the type of the system. If zero steady st;Ee error is desired,
another integrator must be added to the system. This would require an

additional feedback path as it increases the order of the system and the

number of state variables by one.

Design for Finite Sectors of Stability

All the previous discussion is based on the premise that all the
state variables can be fed back to the desired points in the éystgm to be
compensated. The systems which result from the proposed design procedure
then have infinite stability sectors. It is often not possible to feed
back all the state variables as desired. Also, it is not usually necessary
that the stability sector be infinite. In this section, the possibility
of designing for a finite stability sector when all the state variables
cannot be fed back is discussed. (The procedure suggested in Chapter 3
for those cases where all the state variables cannot be fed back can be
used in the nonlinear case as well. The suggestions here provide addi-
tional possible porcedures.) Because of the many different situations
that can arise in nonlinear systems, no attempt is made to provide a
general solution. Instead, specific cases of nonlinear svstems are con-
sidered. The same ideas can be applied to time-varving systems, but the
conditions for absolute stability are more strict.

Case I: It is assumed that in an nth order system, one of the state

variables cannot be fed back. If the other (n-1) state variables are
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fed back, it follows from the discussion of Chapters 3 and 4 that (n-2)
of the zeros of Heq(s) can be located as desired by feeding back through
the proper constant gains. If these (n-~2) zeros are made equal to poles
of G(s), the open loop transfer function has the form

Kl

G(S)Heq(s) = (s+a) (s+b)

(5-9)

or

L
K (Tls+1)

(s+a) (s+b) ° (5-10)

G(s)Heq(s) =

Theoretically, the stability sector is infinite because the phase shift
can never be greater than 1800, so the Popov line can always be drawn
through the origin. Practically, the results of the first part of this
chapter indicate that the stability sector might become finite because
of the effect of the zeros of Heq(s) not being exactly equal to poles of
G(s). The equivalent system for input—output relations is similar to that
developed in Chapter 4 except that the nonlinear portion here is second
order and the linear portion is of order (n-2). Thelconfiguration of this
equivalent system is shown in Figure 5-7. It is possible to determine the
output of the nonlinear portion of the.equibalent system by using phase-
plane analysis., - With this as the input to the linear portion of the
equivalent system, the output of the closed loop svstem can be found as
in Example 4-3.

For the case under consideration, it is seen that absolute sta-
bility can be assured for a finite sector and that the output can be found
for a given input. It is obvious that the effect qf the nonlinearity can-

not be controlled to the extent that it can in the case where all the
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Figure 5-7. Equivalent System When n-1 State Variables are Fed Back

as in Case I. G'(s) is of Order n-2.
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state variables are fed back, because now only (n-2) of the closed loop
poles can be made independent of the nonlinear gain.

Case IT: It is assumed that in an nth order system, m of the state vari-
ables camnot be fed back. In this case the location of (n-m-1) of the
closed loop poles can be made independent of the nonlinear gain. The
open loop transfer function will have (m + 1) poles and the nonlinear
part of the equivalent system will be of order (m + 1), Thus, although
a finite sector of stability can be realized and though the order of the
nonlinear portion of the equivalent system is lower than the order of

the actual system by (n-m-1), many of the advantages of the design
procedure are lost. It is no longer possible to determine the output of
the system by the relatively simple procedures used when the nonlinear
portion of the equivalent system was of order 1 or 2. Neither 1s it
possible to show in general that the output is bounded for a bounded in-
put. Because of this, it appears that this procedure might be more useful

in the case of a regulator system.

Case III: Another possible approach to be used when one or more of the

state variables cannot be fed back is to realize Heq(s) by actually
inserting a transfer function, Heé(s), in the feedback path to produce
the desired zeros. In order to make this transfer function realizable,
poles must be added so that He;(s) will have as many poles as zeros, If
these poles are added far enough out on the real axis, they will not
appreciably affect the system response except for high gains.

The extreme example of this case occurs when only the output can

be fed back. Then He;(s) must have (n-1) zeros and poles. Depending on
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the extent to which the effect of the poles of Heé(s) can be ignored in
the region of operation, this method is an approximation to feeding back
the output and its (n-1) derivatives (or the phase variables) in a linear
combination. An advantage of the method is that the location of the fixed
closed loop poles will be independent of gains located anywhere in the
system, The following example is an illustration of this procedure.
Example 5-2: Here the same fixed plant is considered as in Example 5-1,
with N representing a nonlinear gain. However, it is assumed that only
the output can be fed back, and that it can be fed back only to the input.
If the stability sector 1s not required to be infinite, the realization
of He&(s) as the feedback transfer function can be used to get similar
results, with the primary difference in the two systems being the same as
those pointed out in the above discussion of this method. For example,
He;(s) might be chosen as

625 s2+s+l
H,! () = b23(s retl) _ (5-9)
(s+25)
The open loop transfer function of the linear part of the system then
becomes

625 (5-10)
(s+2) (s425)%

G(s)He;(s) =

It has been shown by Brockett and Willems (1965a) that the stability
sector of a third order nonlinear system with no zeros is the same és
the linear stability sector. From this, it follows that the stability
gector of the above system is (0,58.3]. By making the gain of He;(s)
less than that indicated by Equation 5-9, this stability sector can be

increased by the same ratio.
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Summary

In this chapter the properties of the systems which result from
the basic design procedure are investigated from a practical viewpoint,
In particular, the effect of the zeros of Heq(s) not being exactly equal
to the poles of G(s) is considered. It is concluded that the systems are
structurally stable Insofar as this effect is concerned except in those
cases having closed loop poles on or near the imaginary axis.

Possible procedures that might be useful when the basic design
method is not applicable, either because of the location of the nonlinear-
ity in the system or because all the state variables cannot be fed back,
are discussed. Although no general solution to this problem is obtained,
there are several approaches suggested. The best approach will depend
upon the particular system to be controlled and the required performance

of the system.




CHAPTER VI

CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

Conclusions

Design procedures for single input, single output systems based
on the modern control theory concept of feeding back all the state vari-
ables have been developed. and the characteristics of the resulting
systems studied. These procedures are based on the concept of the SVF
method as developed by Schultz (1966). They utilize both the concept
of series compensation as practiced in classical control theory and
state variable feedback as suggested by modern control theory. First, a
procedure for designing linear systems for a desired closed loop transfer
function is developed from the matrix representation of the system. From
this, a procedure for linear gain insensitive systems is developed.
This procedure for gain insensitive systems is then used to develop the
principal results of this dissertation, a method for designing certain
nonlinear and/or time-varying gystems. i

The basic design procedure applies to systems with a single
memoryless nonlinear and/or time-varying gain whose input-output graph
i1s confined to the first and third quadrants. This is the class of non-
linear systems to which the Popov stability criterion applies., 1In its
basic form, it is limited to systems with the nonlinear and/or time-
varying gain located as shown in Figure 4-1., It is applicable only to
systems classified as the principal case and the simplest particular

case. Modifications of the basic procedure which can be used to overcome
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The requirement concerning the location of the nonlinearity are dis-

cussed.

Significant features of the basic design procedure and the

resulting systems are as follows:

1’

The procedure is applicable, in a practical sense, to
systems of any order. Basic matrix or block diagram
manipulations and the solution of a linear algebraic
equations are required in carrying it out.

The sector of absolute gtability is infinite.

The output of the system 1s bounded for bounded inputs.

The closed loop system can be represented by an equivalent
system for studying input-output relations which consists

of a first order nonlinear and/or time-varying portion

in series with an (n-1)st order stable linear portion. This
equivalent system can be used to determine the closed loop
response for known inputs.

The closed loop system is linearized to the extent that
(n-1) of the closed loop poles are equal to (n-1) of the open
loop poles, independent of the'nonlinear gain.

In systems where the operation is linear for normal

control signals but nonlinear for large control signals,

it is possible to design for desired performance in the

linear region without having to worry about system

stability for large control signals.
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Suggestions for Further Work

Since the proposed design procedure appears to have immediate
practical applications, one obvious area of further work is in the
application of the method to actual control problems. It is difficult to
predict what type of problems might be encountered until this is done.

There are several theoretical questions concerning the method
which need to be investigated. The sensitivity of the system response
to parameter changes in the linear plant need to be investigated. Morgan
(1963, 1966) has studied this problem, and Bob White, a graduate student
at the University of Arizoma, is currently investigating the subject of
sensitivity in systems with state variable feedback.,

The equivalent system allows the calculation of only the output
variable and the contrel signal, as the other state variables in this
equivalent system are not physical variables., Indications are that the
magnitude of these state variables will in general probably not be
excessive compared to corresponding magnitudes in a system with unity
feedback from the outﬁut only. However, this is largely supposition,
and the subject needs to be investigated. Since the output of the non-
linear element can be found from the equivalent system, this could be
used in the actual system block diagram to determine the value of any
desired state variable,

There needs to be more of a comparison between the performance
of systems designed by the proposed method and those designed by
classical methods (or by other modern control methods). A criferion

for this comparison must be chosen. This problem will be resolved at
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least in part by the success with which the procedure can be applied to
actual systems,

The modifications to the basic procedure suggested in Chapter 5
need to be investigated more thoroughly. For example, if all the state
variables cannot be fed back, is the method of determining feedback
transfer functions suggested in Chapter 3 or that of realizing an
He&(s)' as suggested in Chapter 5 better for a particular application?

More information on how to choose a desired closed loop transfer
function in the linear case would be helpful. Likewise in the nonlinear
case, more information on how to choose the location of the closed loop
poles that are made independent of the nonlinear gain would be helpful.

It 1s shown that the linear gain insensitive systems always
satisfy Kalman's frequency condition for some performance index. It would
be interesting, and perhaps useful, to know something about the performance
index for which this condition is satisfied and whether it can be related
to the closed loop transfer function.

More information concerning the extent of the effect of small
changes in the pole and zero locations on the validity of the closed loop
response as calculated from the equivalent system is needed. Additional
analog computer simulations would be helpful‘ét this point and would
also provide other useful information concerning systems designed by the
proposed method.

In conclusion, although several aspects of systems designed by
the proposed method still need to be investigated, it is felt that the
analysis of suéh systems presented in this dissertation is enough to
indicate the possible usefulness of this approach to the design of control

systems with nonlinear and/or time-varying gains.
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